...
首页> 外文期刊>Annales Geophysicae >Convective gravity wave propagation and breaking in the stratosphere: comparison between WRF model simulations and lidar data
【24h】

Convective gravity wave propagation and breaking in the stratosphere: comparison between WRF model simulations and lidar data

机译:对流重力波在平流层中的传播和破裂:WRF模型模拟和激光雷达数据之间的比较

获取原文
   

获取外文期刊封面封底 >>

       

摘要

In this work we perform numerical simulations of convective gravity waves(GWs), using the WRF (Weather Research and Forecasting) model. We first runan idealized, simplified and highly resolved simulation with model top at 80 km. Below 60 km of altitude, a vertical grid spacing smaller than 1 km issupposed to reliably resolve the effects of GW breaking. An eastward linearwind shear interacts with the GW field generated by a single convectivethunderstorm. After 70 min of integration time, averaging within a radius of300 km from the storm centre, results show that wave breaking in the upperstratosphere is largely dominated by saturation effects, driving an averagedrag force up to ?41 m s?1 day?1. In the lower stratosphere,mean wave drag is positive and equal to 4.4 m s?1 day?1.In a second step, realistic WRF simulations are compared with lidarmeasurements from the NDACC network (Network for the Detection ofAtmospheric Composition Changes) of gravity wave potential energy (Ep) overOHP (Haute-Provence Observatory, southern France). Using a vertical gridspacing smaller than 1 km below 50 km of altitude, WRF seems to reliablyreproduce the effect of GW dynamics and capture qualitative aspects of wavemomentum and energy propagation and transfer to background mean flow.Averaging within a radius of 120 km from the storm centre, the resultingdrag force for the study case (2 h storm) is negative in the higher (?1 m s?1 day?1) and positive in the lower stratosphere (0.23 m s?1 day?1).Vertical structures of simulated potential energy profiles are found to bein good agreement with those measured by lidar. Ep is mostly conserved withaltitude in August while, in October, Ep decreases in the upper stratosphereto grow again in the lower mesosphere. On the other hand, the magnitude ofsimulated wave energy is clearly underestimated with respect to lidar databy about 3–4 times.
机译:在这项工作中,我们使用WRF(天气研究和预报)模型执行对流重力波(GWs)的数值模拟。我们首先进行了理想化,简化和高度解析的仿真,模型顶部达到了80 km。在高度低于60 km时,假定垂直网格间距小于1 km,以可靠地解决GW破裂的影响。一次线性风切变与一次对流雷暴产生的GW场相互作用。经过70分钟的积分时间,平均距离风暴中心300公里以内,结果表明,平流层上层的波浪破碎主要受饱和效应的影响,平均拖曳力高达41 ms ?1 天?1 。在平流层下部,平均波阻力为正,等于4.4 ms ?1 天?1 。 第二步,进行现实的WRF模拟与NDACC网络(用于检测大气成分变化的网络)通过OHP(法国南部上普罗旺斯天文台)产生的重力波势能( E p )的激光雷达测量结果进行了比较。 WRF使用海拔高度低于50 km的小于1 km的垂直网格,似乎可以可靠地重现GW动力学的影响并捕获波动量和能量传播的定性方面,并转移到背景平均流,平均距风暴中心120 km以内,在较高的情况下(?1 ms ?1 天?1 ),研究案例(2 h风暴)产生的拖曳力为负,而在平流层较低的区域(0.23) ms ?1 天?1 )。 模拟势能曲线的垂直结构与激光雷达测量的垂直结构吻合良好。 E p 在八月的海拔高度上基本上是保守的,而在十月,平流层上层的 E p 减小而再次增长。在较低的中层。另一方面,相对于激光雷达数据,模拟波能的大小明显被低估了3-4倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号