...
首页> 外文期刊>Annales Geophysicae >A new method to estimate ionospheric electric fields and currents using data from a local ground magnetometer network
【24h】

A new method to estimate ionospheric electric fields and currents using data from a local ground magnetometer network

机译:一种使用本地地面磁力计网络数据估算电离层电场和电流的新方法

获取原文

摘要

In this study we present a new method to estimate ionospheric electric fieldsand currents using ground magnetic recordings and measured or modeledionospheric electric conductivity as the input data. This problem has beenstudied extensively in the past, and the standard analysis technique for sucha set of input parameters is known as the KRM method (Kamide et al., 1981). The newmethod presented in this study makes use of the same input data as thetraditional KRM method, but differs significantly from it in the mathematicalapproach that is used. In the KRM method one tries to find such a potentialelectric field, that the resulting current system has the same curl as theionospheric equivalent currents. In the new method we take a differentapproach, so that we determine such a curl-free current system that, togetherwith the equivalent currents, it is consistent with a potential electricfield. This approach results in a slightly different equation, that makesbetter use of the information contained in the equivalent currents. In thispaper we concentrate on regional studies, where the (unknown) boundaryconditions at the borders of the analysis area play a significant role in theKRM solution. In order to overcome this complication, we formulate a novelnumerical algorithm to be used with our new calculation method. Thisalgorithm is based on the Cartesian elementary current systems (CECS). WithCECS the boundary conditions are implemented in a natural way, makingregional studies less prone to errors. We compare the traditional KRM methodand our new CECS-based formulation using several realistic models of typicalmeso-scale phenomena in the auroral ionosphere, including a uniformelectrojet, the Ω-bands and the westward traveling surge. It is foundthat the error in the CECS results is typically about 20%–40%, whereasthe errors in the KRM results are significantly larger.
机译:在这项研究中,我们提出了一种使用地面磁记录和测量或建模的电离层电导率作为输入数据估算电离层电场和电流的新方法。过去已经对该问题进行了广泛的研究,并且针对这种输入参数集的标准分析技术被称为KRM方法(Kamide等,1981)。本研究中提出的新方法使用了与传统KRM方法相同的输入数据,但在所使用的数学方法上却有很大不同。在KRM方法中,人们试图找到一种潜在的电场,使得所得的电流系统具有与电离层等效电流相同的卷曲度。在新方法中,我们采用了不同的方法,因此我们确定了一种无卷曲电流系统,该系统与等效电流一起与势电场一致。这种方法产生的方程式稍有不同,因此可以更好地利用等效电流中包含的信息。在本文中,我们专注于区域研究,其中分析区域边界处的(未知)边界条件在KRM解决方案中起着重要作用。为了克服这种复杂性,我们制定了一种新颖的数值算法,与我们的新计算方法一起使用。该算法基于笛卡尔基本电流系统(CECS)。使用CECS,边界条件以自然的方式实现,从而使区域研究不易出错。我们比较了传统的KRM方法和基于CECS的新公式,使用了极光电离层中典型中尺度现象的几种现实模型,包括均匀的电喷流,Ω波段和向西行进的浪涌。发现,CECS结果中的误差通常约为20%–40%,而KRM结果中的误差则明显更大。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号