...
首页> 外文期刊>Annales Geophysicae >Climatology of GPS phase scintillation and HF radar backscatter for the high-latitude ionosphere under solar minimum conditions
【24h】

Climatology of GPS phase scintillation and HF radar backscatter for the high-latitude ionosphere under solar minimum conditions

机译:最低太阳条件下高纬度电离层GPS相位闪烁和HF雷达反向散射的气候学

获取原文

摘要

Maps of GPS phase scintillation at high latitudes have been constructed after the first two years of operation of the Canadian High Arctic Ionospheric Network (CHAIN) during the 2008a??2009 solar minimum. CHAIN consists of ten dual-frequency receivers, configured to measure amplitude and phase scintillation from L1 GPS signals and ionospheric total electron content (TEC) from L1 and L2 GPS signals. Those ionospheric data have been mapped as a function of magnetic local time and geomagnetic latitude assuming ionospheric pierce points (IPPs) at 350 km. The mean TEC depletions are identified with the statistical high-latitude and mid-latitude troughs. Phase scintillation occurs predominantly in the nightside auroral oval and the ionospheric footprint of the cusp. The strongest phase scintillation is associated with auroral arc brightening and substorms or with perturbed cusp ionosphere. Auroral phase scintillation tends to be intermittent, localized and of short duration, while the dayside scintillation observed for individual satellites can stay continuously above a given threshold for several minutes and such scintillation patches persist over a large area of the cusp/cleft region sampled by different satellites for several hours. The seasonal variation of the phase scintillation occurrence also differs between the nightside auroral oval and the cusp. The auroral phase scintillation shows an expected semiannual oscillation with equinoctial maxima known to be associated with aurorae, while the cusp scintillation is dominated by an annual cycle maximizing in autumn-winter. These differences point to different irregularity production mechanisms: energetic electron precipitation into dynamic auroral arcs versus cusp ionospheric convection dynamics. Observations suggest anisotropy of scintillation-causing irregularities with stronger L-shell alignment of irregularities in the cusp while a significant component of field-aligned irregularities is found in the nightside auroral oval. Scintillation-causing irregularities can coexist with small-scale field-aligned irregularities resulting in HF radar backscatter. The statistical cusp and auroral oval are characterized by the occurrence of HF radar ionospheric backscatter and mean ground magnetic perturbations due to ionospheric currents.
机译:在加拿大高北极电离层网络(CHAIN)在2008a至2009年太阳最低峰期间投入运行的头两年后,已绘制了高纬度GPS相位闪烁的地图。 CHAIN由十个双频接收机组成,这些接收机被配置为测量L1 GPS信号的幅度和相位闪烁以及L1和L2 GPS信号的电离层总电子含量(TEC)。假设电离层的穿刺点(IPP)处于350 km,则这些电离层数据已根据磁当地时间和地磁纬度进行了映射。用统计上的高纬度和中纬度谷确定平均TEC损耗。相位闪烁主要发生在夜晚的极光椭圆形和尖端的电离层足迹中。最强的相位闪烁与极光弧变亮和亚暴或扰动的尖顶电离层有关。极光相闪烁往往是断续的,局部的且持续时间较短,而单个卫星的日间闪烁可能会持续在给定阈值之上持续几分钟,并且这种闪烁斑块在大范围的尖瓣/ c裂区域上持续存在,通过不同的采样卫星几个小时。夜间极光椭圆形和尖状之间,相位闪烁发生的季节变化也不同。极光相闪烁显示出预期的半年振荡,等离子最大值已知与极光有关,而尖峰闪烁以秋冬季最大化的年周期为主导。这些差异指向不同的不规则产生机制:高能电子沉淀到动态极光弧中,而尖顶电离层对流动力学却不成立。观察结果表明,导致闪烁的不规则性具有各向异性,而尖头上的不规则性具有更强的L壳对齐方式,而在夜间的极光椭圆形中发现了场对齐不规则性的重要组成部分。引起闪烁的不规则现象可能与小范围的场对准不规则现象共存,从而导致HF雷达反向散射。统计尖峰和极光椭圆的特征是HF雷达电离层反向散射的发生和电离层电流引起的平均地面磁扰动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号