首页> 外文期刊>AIP Advances >Field dependent transition to the non-linear regime in magnetic hyperthermia experiments: Comparison between maghemite, copper, zinc, nickel and cobalt ferrite nanoparticles of similar sizes
【24h】

Field dependent transition to the non-linear regime in magnetic hyperthermia experiments: Comparison between maghemite, copper, zinc, nickel and cobalt ferrite nanoparticles of similar sizes

机译:磁热实验中与磁场有关的跃迁到非线性状态:类似尺寸的磁赤铁矿,铜,锌,镍和钴铁氧体纳米粒子之间的比较

获取原文
           

摘要

Further advances in magnetic hyperthermia might be limited by biological constraints, such as using sufficiently low frequencies and low field amplitudes to inhibit harmful eddy currents inside the patient's body. These incite the need to optimize the heating efficiency of the nanoparticles, referred to as the specific absorption rate (SAR). Among the several properties currently under research, one of particular importance is the transition from the linear to the non-linear regime that takes place as the field amplitude is increased, an aspect where the magnetic anisotropy is expected to play a fundamental role. In this paper we investigate the heating properties of cobaltferrite and maghemite nanoparticles under the influence of a 500 kHz sinusoidal magnetic field with varying amplitude, up to 134 Oe. The particles were characterized by TEM, XRD, FMR and VSM, from which most relevant morphological, structural and magnetic properties were inferred. Both materials have similar size distributions and saturation magnetization, but strikingly different magnetic anisotropies. From magnetic hyperthermia experiments we found that, while at low fields maghemite is the best nanomaterial for hyperthermia applications, above a critical field, close to the transition from the linear to the non-linear regime, cobaltferrite becomes more efficient. The results were also analyzed with respect to the energy conversion efficiency and compared with dynamic hysteresis simulations. Additional analysis with nickel, zinc and copper-ferrite nanoparticles of similar sizes confirmed the importance of the magnetic anisotropy and the damping factor. Further, the analysis of the characterization parameters suggested core-shell nanostructures, probably due to a surface passivation process during the nanoparticle synthesis. Finally, we discussed the effect of particle-particle interactions and its consequences, in particular regarding discrepancies between estimated parameters and expected theoretical predictions.
机译:磁热疗的进一步发展可能会受到生物学上的限制,例如使用足够低的频率和低的场振幅来抑制患者体内有害的涡流。这些导致需要优化纳米颗粒的加热效率,称为比吸收率(SAR)。在目前正在研究的几种特性中,特别重要的一个是随着磁场幅度的增加而发生的从线性状态到非线性状态的过渡,在这一方面,磁各向异性有望发挥重要作用。在本文中,我们研究了在变化幅度最大至134 Oe的500 kHz正弦磁场的​​影响下,钴铁氧体和磁赤铁矿纳米粒子的加热性能。通过TEM,XRD,FMR和VSM对颗粒进行了表征,从中可以推断出最相关的形态,结构和磁性。两种材料具有相似的尺寸分布和饱和磁化强度,但磁各向异性却显着不同。从磁热实验中,我们发现,尽管磁石在低磁场下是用于热疗应用的最佳纳米材料,但在临界场以上,接近从线性到非线性范围的转变,钴铁氧体变得更加有效。还就能量转换效率对结果进行了分析,并与动态磁滞仿真进行了比较。用相似大小的镍,锌和铜铁氧体纳米粒子进行的其他分析证实了磁各向异性和阻尼因子的重要性。此外,表征参数的分析表明了核-壳纳米结构,这可能是由于纳米颗粒合成过程中的表面钝化过程所致。最后,我们讨论了粒子间相互作用的影响及其后果,特别是关于估计参数与预期理论预测之间的差异。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号