...
首页> 外文期刊>AIP Advances >Finite difference method and algebraic polynomial interpolation for numerically solving Poisson's equation over arbitrary domains
【24h】

Finite difference method and algebraic polynomial interpolation for numerically solving Poisson's equation over arbitrary domains

机译:有限域上泊松方程数值求解的有限差分法和代数多项式插值

获取原文
   

获取外文期刊封面封底 >>

       

摘要

The finite difference method (FDM) based on Cartesian coordinate systems can be applied to numerical analyses over any complex domain. A complex domain is usually taken to mean that the geometry of an immersed body in a fluid is complex; here, it means simply an analytical domain of arbitrary configuration. In such an approach, we do not need to treat the outer and inner boundaries differently in numerical calculations; both are treated in the same way. Using a method that adopts algebraic polynomial interpolations in the calculation around near-wall elements, all the calculations over irregular domains reduce to those over regular domains. Discretization of the space differential in the FDM is usually derived using the Taylor series expansion; however, if we use the polynomial interpolation systematically, exceptional advantages are gained in deriving high-order differences. In using the polynomial interpolations, we can numerically solve the Poisson equation freely over any complex domain. Only a particular type of partial differential equation, Poisson's equations, is treated; however, the arguments put forward have wider generality in numerical calculations using the FDM.
机译:基于笛卡尔坐标系的有限差分法(FDM)可以应用于任何复杂域的数值分析。复数域通常是指浸没在流体中的物体的几何形状很复杂。在这里,它仅表示任意配置的分析域。通过这种方法,我们不需要在数值计算中对外部和内部边界进行区别对待。两者的处理方式相同。在近壁单元周围的计算中使用一种采用代数多项式插值的方法,所有非规则域上的计算都减少为规则域上的计算。 FDM中空间微分的离散化通常使用泰勒级数展开获得;但是,如果我们系统地使用多项式插值,则在推导高阶差分时会获得特殊优势。通过使用多项式插值,我们可以在任何复杂域上自由地数值求解泊松方程。仅处理特殊类型的偏微分方程(泊松方程);但是,提出的论点在使用FDM的数值计算中具有更广泛的通用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号