...
首页> 外文期刊>African Journal of Biotechnology >Use of remote sensing and molecular markers to detect toxic cyanobacterial hyperscum crust: A case study on Lake Hartbeespoort, South Africa
【24h】

Use of remote sensing and molecular markers to detect toxic cyanobacterial hyperscum crust: A case study on Lake Hartbeespoort, South Africa

机译:利用遥感和分子标记物检测有毒的蓝细菌超浮渣结皮:以南非哈特比斯普特湖为例

获取原文

摘要

In this study, we monitored the formation of cyanobacterial hyperscum and crust formation in Lake Hartbeespoort using satellite images and ground monitoring. The hyperscum that formed near the reservoir wall was characterised by a distinctive white surface layer of crust. Hyperscum is the result of exposure of the cells to high radiation, inflicting irreversible damage to the genetic constitution of the upper layer of?Microcystis?aeruginosa?cells. Under the 3 mm thick layer of crust, dark (<0.93 μmol of photons m-2s-1) anaerobic conditions (0.4 mg/l, 3% saturation) prevailed with high levels of microcystin (12,300 μg/l) in the absence of sunlight irradiation and photolysis by UV light. Real time polymerase chain reaction (PCR) analysis indicated low levels of transcription of the?mcyA,?mcyB?and?mcyD?genes which are responsible for synthesis of cyanotoxins under these low light intensity conditions. At other sampling sites where cyanobacterial scum occurred and hyperscum crust was absent, only the?mcyB?and?mcyD?genes were transcribed. A plausible explanation for the transcription of the?mcyA?gene in the hyperscum and not at the other sampling sites, was the presence of environmental stress-inducing factors, e.g. low light intensity (0.93 μmol of photon m-2?s-1) and pH 6.1. At the sampling site where no cyanobacterial scum was visible on the satellite images, low cell abundance (2.4 x 104?μg/l) and chlorophyll?a?(12.2 μg/l) was measured in comparison with sites where cyanobacterial scum was visible on the satellite images.
机译:在这项研究中,我们使用卫星图像和地面监测手段监测了哈特比斯普特湖中蓝藻超浮渣的形成和结皮的形成。在储层壁附近形成的高浮渣的特征是明显的白色外壳表面层。高浮渣是细胞暴露于高辐射下的结果,对“微囊藻”-“绿藻”细胞上层的遗传结构造成不可逆转的损害。在3毫米厚的外壳层下,在没有(P <0.01的微囊藻毒素)(12,300μg/ l)的情况下,深色(<0.93μmol光子m-2s-1)厌氧条件(0.4 mg / l,3%饱和度)普遍存在。阳光照射和紫外线分解。实时聚合酶链反应(PCR)分析表明,在这些低光强度条件下,负责合成氰毒素的“ mcyA”,“ mcyB”和“ mcyD”基因的转录水平较低。在其他发生蓝藻浮渣且不存在高浮渣外壳的采样点,仅转录了“ mcyB”和“ mcyD”基因。对于mcyAβ基因在高浮渣中而不是在其他采样部位的转录的合理解释是存在环境胁迫诱导因子,例如:低光强度(光子m-2?s-1为0.93μmol)和pH值为6.1。在卫星图像上看不到蓝藻浮渣的采样点,与在蓝藻上可见蓝藻浮渣的站点相比,测得的低细胞丰度(2.4 x 104?μg/ l)和叶绿素a?(12.2μg/ l)。卫星图像。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号