...
首页> 外文期刊>ACS Omega >Improved High Temperature Performance of a Spinel LiNi0.5Mn1.5O4 Cathode for High-Voltage Lithium-Ion Batteries by Surface Modification of a Flexible Conductive Nanolayer
【24h】

Improved High Temperature Performance of a Spinel LiNi0.5Mn1.5O4 Cathode for High-Voltage Lithium-Ion Batteries by Surface Modification of a Flexible Conductive Nanolayer

机译:通过对柔性导电纳米层进行表面改性,改善了用于高压锂离子电池的尖晶石型LiNi0.5Mn1.5O4阴极的高温性能

获取原文

摘要

The composite cathode material of the conductive polymer polyaniline (PANI)-coated spinel structural LiNi0.5Mn1.5O4 (LNMO) for high-voltage lithium-ion batteries has been successfully synthesized by an in situ chemical oxidation polymerization method. The electrode of the LNMO–PANI composite material shows superior rate capability and excellent cycling stability. A capacity of 123.4 mAh g–1 with the capacity retention of 99.7% can be maintained at 0.5C after 200 cycles in the voltage range of 3.0–4.95 V (vs Li/Li+) at room temperature. Even with cycling at 5C, a capacity of 65.5 mAh g–1 can still be achieved. The PANI coating layer can not only reduce the dissolution of Ni and Mn from the LNMO cubic framework into the electrolyte during cycling, but also significantly improve the undesirable interfacial reactions between the cathode and electrolyte, and markedly increase the electrical conductivity of the electrode. At 55 °C, the LNMO–PANI composite material exhibits more superior cyclic performance than pristine, that is, the capacity retention of 94.5% at 0.5C after 100 cycles vs that of 13.0%. This study offers an effective strategy for suppressing the decomposition of an electrolyte under the highly oxidizing (>4.5 V) and elevated temperature conditions.
机译:通过原位化学氧化聚合法成功地合成了用于高压锂离子电池的导电聚合物聚苯胺(PANI)涂层尖晶石结构LiNi0.5Mn1.5O4(LNMO)的复合阴极材料。 LNMO-PANI复合材料的电极具有出色的倍率性能和出色的循环稳定性。在室温下,在3.0–4.95 V(vs Li / Li +)的电压范围内经过200次循环后,可以在0.5C下保持123.4 mAh g–1的容量,保持99.7%的容量。即使在5C下循环,仍可达到65.5 mAh g–1的容量。 PANI涂层不仅可以减少循环过程中Ni和Mn从LNMO立方骨架溶解到电解质中,而且可以显着改善阴极和电解质之间的不良界面反应,并显着提高电极的电导率。在55°C时,LNMO-PANI复合材料的循环性能优于原始材料,也就是说,在100次循环后,在0.5C下的容量保持率为94.5%,而相对于13.0%。这项研究提供了一种在高氧化性(> 4.5 V)和高温条件下抑制电解质分解的有效策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号