...
首页> 外文期刊>Advances in materials science and engineering >Additive Manufacturing Enabled by Electrospinning for Tougher Bio-Inspired Materials
【24h】

Additive Manufacturing Enabled by Electrospinning for Tougher Bio-Inspired Materials

机译:通过电纺技术实现更坚韧的生物启发性材料的增材制造

获取原文
           

摘要

Nature has taught us fascinating strategies to design materials such that they exhibit superior and novel properties. Shells of mantis club have protein fibres arranged in a 3D helicoidal architecture that give them remarkable strength and toughness, enabling them to absorb high-impact energy. This complex architecture is now possible to replicate with the recent advances in additive manufacturing. In this paper, we used melt electrospinning to fabricate 3D polycaprolactone (PCL) fibrous design to mimic the natural helicoidal structures found in the shells of the mantis shrimp’s dactyl club. To improve the tensile deformation behavior of the structures, the surface of each layer of the samples were treated with carboxyl and amino groups. The toughness of the surface-treated helicoidal sample was found to be two times higher than the surface-treated unidirectional sample and five times higher than the helicoidal sample without surface treatment. Free amino groups (NH2) were introduced on the surface of the fibres and membrane via surface treatment to increase the interaction and adhesion among the different layers of membranes. We believe that this represents a preliminary feasibility in our attempt to mimic the 3D helicoidal architectures at small scales, and we still have room to improve further using even smaller fibre sizes of the modeled architectures. These lightweight synthetic analogue materials enabled by electrospinning as an additive manufacturing methodology would potentially display superior structural properties and functionalities such as high strength and extreme toughness.
机译:大自然教会了我们迷人的设计材料策略,使其表现出卓越而新颖的性能。螳螂杆的外壳具有3D螺旋结构排列的蛋白质纤维,赋予它们非凡的强度和韧性,使它们能够吸收高冲击能量。现在,这种复杂的架构可以与增材制造的最新进展相提并论。在本文中,我们使用熔体静电纺丝技术制造了3D聚己内酯(PCL)纤维设计,以模仿螳螂虾的根茎中发现的天然螺旋结构。为了改善结构的拉伸变形行为,用羧基和氨基对样品的每一层表面进行处理。发现经表面处理的螺旋样品的韧性是经表面处理的单向样品的两倍,是未经表面处理的螺旋样品的五倍。通过表面处理将游离氨基(NH2)引入到纤维和膜的表面,以增加膜不同层之间的相互作用和粘附力。我们认为,这代表了我们在小规模模拟3D螺旋结构的尝试中的初步可行性,并且我们仍然有空间使用甚至更小的光纤尺寸建模模型来进一步改进。这些通过电纺作为增材制造方法的轻质合成模拟材料可能会显示出卓越的结构特性和功能,例如高强度和极强的韧性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号