首页> 外文期刊>Acta Neuropathologica Communications >Epigenetic control of epilepsy target genes contributes to a cellular memory of epileptogenesis in cultured rat hippocampal neurons
【24h】

Epigenetic control of epilepsy target genes contributes to a cellular memory of epileptogenesis in cultured rat hippocampal neurons

机译:癫痫靶基因的表观遗传控制有助于培养的大鼠海马神经元中癫痫发生的细胞记忆

获取原文
           

摘要

Hypersynchronous neuronal excitation manifests clinically as seizure (ictogenesis), and may recur spontaneously and repetitively after a variable latency period (epileptogenesis). Despite tremendous research efforts to describe molecular pathways and signatures of epileptogenesis, molecular pathomechanisms leading to chronic epilepsy remain to be clarified. We hypothesized that epigenetic modifications may form the basis for a cellular memory of epileptogenesis, and used a primary neuronal cell culture model of the rat hippocampus to study the translation of massive neuronal excitation into persisting changes of epigenetic signatures and pro-epileptogenic target gene expression. Increased spontaneous activation of cultured neurons was detected 3 and 7?days after stimulation with 10?μM glutamate when compared to sham-treated time-matched controls using calcium-imaging in vitro. Chromatin-immunoprecipitation experiments revealed short-term (3?h, 7?h, and 24?h) and long-term (3 d and 2?weeks) changes in histone modifications, which were directly linked to decreased expression of two selected epilepsy target genes, e.g. excitatory glutamate receptor genes Gria2 and Grin2a . Increased promoter methylation observed 4?weeks after glutamate stimulation at respective genes suggested long-term repression of Gria2 and Grin2a genes. Inhibition of glutamatergic activation or blocking the propagation of action potentials in cultured neurons rescued altered gene expression and regulatory epigenetic modifications. Our data support the concept of a cellular memory of epileptogenesis and persisting epigenetic modifications of epilepsy target genes, which are able to turn normal into pro-epileptic neurons and circuits.
机译:在临床上,超同步神经元兴奋表现为癫痫发作(发作),并且在可变的潜伏期后(癫痫发生)可能自发重复出现。尽管为描述癫痫发生的分子途径和特征进行了大量的研究,但导致慢性癫痫的分子病理机制仍有待阐明。我们假设表观遗传修饰可能构成癫痫发生细胞记忆的基础,并使用大鼠海马的原代神经元细胞培养模型来研究大量神经元兴奋转化为表观遗传学标记和促癫痫前体靶基因表达的持续变化。与在体外使用钙成像进行假治疗的时间匹配对照相比,在用10?μM谷氨酸刺激后3和7天,发现培养的神经元的自发激活增加。染色质免疫沉淀实验显示组蛋白修饰的短期(3?h,7?h和24?h)和长期(3 d和2?weeks)变化,这些变化直接与两个所选癫痫的表达下降有关靶基因,例如兴奋性谷氨酸受体基因Gria2和Grin2a。谷氨酸刺激各基因后4周观察到启动子甲基化增加,提示长期抑制Gria2和Grin2a基因。在培养的神经元中抑制谷氨酸能激活或阻止动作电位的传播可以挽救改变的基因表达和调节表观遗传修饰。我们的数据支持癫痫发生的细胞记忆和癫痫靶基因的持久表观遗传修饰的概念,这些基因能够正常转变为癫痫前神经元和回路。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号