首页> 外文期刊>Acta Fytotechnica et Zootechnica: the scientific journal for phytotechnics and zootechnics >Effects of biochar and biochar with nitrogen on soil organic matter and soil structure in haplic Luvisol
【24h】

Effects of biochar and biochar with nitrogen on soil organic matter and soil structure in haplic Luvisol

机译:生物炭和含氮生物炭对卢维索单层土壤有机质和土壤结构的影响

获取原文
           

摘要

Received: 2016-06-08 | Accepted: 2016-10-26 | Available online: 2016-12-22 http://dx.doi.org/10.15414/afz.2016.19.04.129-138 An experiment of different application rates of biochar and biochar combined with nitrogen fertilizer was conducted at the newly established experimental field (spring 2014) on a Haplic Luvisol located in Nitra region of Slovakia during the growing season of spring barley. The aim of this study was to evaluate the effects of biochar combined with fertilization on the soil organic matter and soil structure parameters. The treatments (3 replicates) consisted of 0, 10 and 20 t ha-1 of biochar application (B0, B10 and B20) combined with 0, 40 and 80 kg ha-1 of nitrogen fertilizer applied (N0, N40, N80). The results showed that the effect of biochar application without N fertilization significantly decreased the easily extractable glomalin in B10N0 and B20N0 compared to B0N0, respectively. The same effects were observed in B10N40 and B10N80. The soil organic matter (SOM) was rapidly degradable by micro-organisms (on the base of lability index values) in B10N0 treatment and the SOM had greater stability and resistance to microbial degradation in B10N80 treatment. Added N fertilization in both doses together with 10 t biochar ha-1 had statistical significant influence on decreasing of lability index values. The highest accumulation of carbon occurred in B20N0 treatment. The addition of biochar at 10 t ha-1 together with 80 kg ha-1 N significantly increased values of carbon pool index (24%) compared to B10N0. Generally, the highest average content of macro-aggregates was found in the B20N0 treatment and then in B20N80 > B10N0 > B0N0 > B10N80 > B10N40 > B20N40. Treatment B10N0 showed robust increase (by 53%) for the macro-aggregates of > 7 mm, but on the other hand it decreased content of macro-aggregates 3–1 mm compared to B0N0. A considerable increase of aggregates stability was found in range of 19% in case of 20 t ha-1 of biochar application combined with 80 kg ha-1 N compared to B0N0. A positive effect on decrease of percentage of aggregate destruction was found only in case of B20N80 treatment compared to B0N0. Keywords: biochar, N fertilization, carbon pool index, percentage of aggregate destruction, aggregate stability References Abiven, S. et al. (2015) Biochar amendment increases maize root surface areas and branching: a shovelomics study in Zambia. In Plant Soil , vol. 342, pp. 1–11. doi: http://dx.doi.org/10.1007/s11104-015-2533-2 Alguacil, M.M. et al. (2014) Changes in the composition and diversity of AMF communities mediated by management practices in a Mediterranean soil are related with increases in soil biological activity. In Soil Biol. Biochem ., vol. 76, pp. 34–44. doi: http://dx.doi.org/10.1016/j.soilbio.2014.05.002 Atkinson, C.J. et al. (2010) Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. In Plant Soil , vol. 337, pp. 1–18. doi: http://dx.doi.org/1 0.1007/s11104-010-0464-5 Benbi, D.K. et al. (2015) Sensitivity of labile soil organic carbon pools to long-term fertilizer, straw and manure management in rice-wheat system. In Pedosphere , vol. 25, pp. 534–545. doi: http://dx.doi.org/ 10.1016/S1002-0160(15)30034-5 Blair, G.J. et al. (1995) Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural system. In Aust. J. Agri. Res ., vol. 46, pp. 1459–1466. Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. In Analytical Biochemistry , vol. 72(1-2), pp. 248–254. Brodowski, S. et al. (2006) Aggregate-occluded black carbon in soil. In Eur. J. Soil Sci ., vol. 57, pp. 539–546. doi: http://dx.doi.org/10.1111/j.1365-2389.2006.00807.x BRONICK, C.J. and LAL, R. (2005) The soil structure and land management: a review. In Geoderma, vol. 124, no. 1–2, pp. 3–22. doi: http://dx.doi.org/10.1016/j.geoderma.2004.03.005 Butnan, S. et al. (2015) Biochar characteristics and application rates affecting corn growth and properties of soils contrasting in texture and mineralogy. In Geoderma , vol. 237–238, pp. 105–116. doi: http://dx.doi.org/10.1016/j.geoderma.2014.08.010 Chaplot, V. and Cooper, M. (2015) Soil aggregate stability to predict organic carbon outputs from soils. In Geoderma , vol. 243-244, pp. 205–213. doi: http://dx.doi.org/10.1016/j.geoderma.2014.12.013 Cheng, C.H. et al. (2006) Oxidation of black carbon by biotic and abiotic processes. In Org. Geochem ., vol. 37, pp. 1477–1488. doi: http://dx.doi.org/10.1016/j.orggeochem.2006.06.022 Conteh, A. et al. (1999) Labile organic carbon determined by permangante oxidation and its relationships to other measurements of soil organic carbon. In Hum. Subst. Environ ., vol. 1, pp. 3–15. DZIADOWIEC, H. and GONET, S.S. (1999) Methodical guide-book for soil organic matter studies . Prace Komisji Naukowych Polskiego Towar
机译:收稿日期:2016-06-08 |接受:2016-10-26 |可在线获得:2016-12-22 http://dx.doi.org/10.15414/afz.2016.19.04.129-138在新建立的实验领域进行了生物炭和生物炭与氮肥组合的不同施用量的实验( 2014年春季)在春季大麦生长季节位于斯洛伐克尼特拉地区的Haplic Luvisol上。这项研究的目的是评估生物炭与施肥对土壤有机质和土壤结构参数的影响。处理(3次重复)由生物炭施用量0、10和20 t ha-1(B0,B10和B20)与氮肥施用量分别为0、40和80 kg ha-1(N0,N40,N80)组成。结果表明,与B0N0相比,在不施氮的情况下施用生物炭的效果显着降低了B10N0和B20N0中易提取的gloomalin。在B10N40和B10N80中观察到相同的效果。在B10N0处理中,土壤有机物(SOM)可被微生物快速降解(基于不稳定性指数值),并且在B10N80处理中,SOM具有更大的稳定性和抗微生物降解性。两种剂量中添加的氮肥以及10 t生物炭ha-1对降低不稳定性指数值具有统计学上的显着影响。 B20N0处理中碳的积累最高。与B10N0相比,在10 t ha-1处添加生物炭与80 kg ha-1 N一起显着增加了碳库指数(24%)。通常,在B20N0处理中发现最大的平均聚集体含量,然后在B20N80> B10N0> B0N0> B10N80> B10N40> B20N40中发现。对于> 7 mm的大骨料,处理B10N0表现出强劲的增长(增长53%),但另一方面,与B0N0相比,它减少了3-1mm的大骨料的含量。与B0N0相比,在施用20 t ha-1的生物炭和80 kg ha-1 N的情况下,发现集料稳定性显着提高了19%。与B0N0相比,仅在B20N80处理的情况下,发现减少骨料破坏百分比的积极作用。关键词:生物炭,氮肥,碳库指数,聚集体破坏百分比,聚集体稳定性参考文献Abiven,S.等。 (2015年)生物炭修正案增加了玉米根部的表面积和分支:赞比亚的一个填隙技术研究。在植物土壤中, 342,第1-11页。 doi:http://dx.doi.org/10.1007/s11104-015-2533-2 Alguacil,M.M。等。 (2014)在地中海土壤中,管理实践介导的AMF群落组成和多样性的变化与土壤生物活性的增加有关。在土壤生物学中。生物化学,第一卷。 76,第34-44页。 doi:http://dx.doi.org/10.1016/j.soilbio.2014.05.002 Atkinson,C.J.等。 (2010)从生物炭应用到温带土壤实现农业收益的潜在机制:综述。在植物土壤中, 337页,第1-18页。 doi:http://dx.doi.org/1 0.1007 / s11104-010-0464-5 Benbi,D.K。等。 (2015)不稳定的土壤有机碳库对稻麦系统中长期肥料,稻草和粪肥管理的敏感性。在Pedosphere,第一卷。 25,第534–545页。 doi:http://dx.doi.org/ 10.1016 / S1002-0160(15)30034-5 Blair,G.J.等。 (1995年)根据土壤中碳的氧化程度,以及农业系统碳管理指数的发展。在奥斯特。 J.阿格里。 Res。,第一卷46,第1459-1466页。布拉德福德(1976)利用蛋白质-染料结合原理定量分析微克蛋白质的快速而灵敏的方法。在《分析生物化学》,第一卷。 72(1-2),第248–254页。 Brodowski,S。等。 (2006年)土壤中聚集的黑碳。在欧洲。 J.土壤科学,第一卷。 57,第539–546页。 doi:http://dx.doi.org/10.1111/j.1365-2389.2006.00807.x BRONICK,C.J。和LAL,R.(2005年),《土壤结构和土地管理:回顾》。在Geoderma中,第1卷。 124号1-2,第3-22页。 doi:http://dx.doi.org/10.1016/j.geoderma.2004.03.005 Butnan,S.等。 (2015)生物炭的特性和施用量会影响玉米的生长以及土壤质地和矿物学上的差异。在Geoderma,第237–238,第105–116页。 doi:http://dx.doi.org/10.1016/j.geoderma.2014.08.010 Chaplot,V.和Cooper,M.(2015)土壤聚集体稳定性,以预测土壤中有机碳的产量。在Geoderma,第243-244,第205-213页。 doi:http://dx.doi.org/10.1016/j.geoderma.2014.12.013 Cheng,C.H.等。 (2006)通过生物和非生物过程氧化黑碳。在组织中。地球化学,卷。 37,第1477至1488页。 doi:http://dx.doi.org/10.1016/j.orggeochem.2006.06.022 Conteh,A.等。 (1999)不稳定的有机碳,由高锰酸盐氧化及其与土壤有机碳其他测量值的关系确定。在嗡嗡声。替代环境。 1,第3-15页。 DZIADOWIEC,H.和GONET,S.S.(1999)土壤有机质研究方法指南。 Prace Komisji Naukowych Polskiego Towar

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号