...
首页> 外文期刊>Cureus. >Evaluation of CyberKnife? Fiducial Tracking Limitations to Assist Targeting Accuracy: A Phantom Study with Fiducial Displacement
【24h】

Evaluation of CyberKnife? Fiducial Tracking Limitations to Assist Targeting Accuracy: A Phantom Study with Fiducial Displacement

机译:射波刀的评价?基准跟踪的局限性,以辅助瞄准精度:基准位移的幻影研究

获取原文

摘要

Introduction The underlying assumptions of the CyberKnife? (Accuray, Sunnyvale, CA, US) fiducial tracking system are: i) fiducial positions are accurately detected; ii) inter-fiducial geometry remains consistent (rigid); iii) inter-fiducial geometric array changes are detected and either accommodated with corrections or treatment is interrupted. However: i) soft-tissue targets are deformable & fiducial migration is possible; ii) the accuracy of the tracking system has not previously been examined with fiducial displacement; iii) treatment interruptions may occur due to inter-fiducial geometric changes, but there is little information available to assist subsequent troubleshooting. The purpose of this study was to emulate a clinical target defined with a two, three, or four-fiducial array?where one fiducial is displaced to mimic a target deformation or fiducial migration scenario. The objectives:?evaluate the fiducial positioning accuracy, array interpretation, & corresponding corrections of the CyberKnife?system, with the aim of assisting troubleshooting following fiducial displacement. Methods A novel solid-water phantom was constructed with three fixed fiducials (F1,F2,F3) & one moveable fiducial (F4), arranged as if placed to track an imaginary clinical target. Using either two fiducials (F1,F4), different combinations of three fiducials (F1,F2,F4; F1,F3,F4; F2,F3,F4) or four fiducials (F1,F2,F3,F4), repeat experiments were conducted where?F4 was displaced inferiorly at 2-mm intervals from 0-16 mm. Data were?acquired at each position of F4, including rigid body errors (RBE), fiducial x, y,?& z coordinate displacements, six degrees of freedom (DOF) corrections, & robot center-of-mass (COM) translation corrections. Results Maximum positioning difference?(mean±SD) between the?reference and live x, y, & z coordinates for the three fixed fiducials was 0.08±0.30 mm, confirming good accuracy for fixed fiducial registration. For two fiducials (F1,F4), F4 registration was accurate to 14-mm displacement and the F4 x-axis coordinate change was 2.0±0.12 mm with each 2 mm inferior displacement?validating the phantom for tracking evaluation. RBE was 5 mm (system threshold) at 6-14 mm F4 displacement: however, F1 was misidentified as the RBE main contributor. Further, F1/F4 false-lock occurred at 16 mm F4 displacement with corresponding RBE 13 mm. For combinations of three fiducials, F4 registration was accurate to 10-mm displacement. RBE was 5 mm at 6-16 mm F4 displacement: however, F4 false-lock occurred at 12-16 mm with RBE 5-6 mm. For four fiducials, F4 registration was accurate?to 4 mm displacement: however, F4 false-lock occurred at 6-16 mm displacement with concerning RBE 2 & 5 at 6 & 8-mm F4 displacement, respectively. False-locks were easily identified in the phantom but frequently uncorrectable. Conclusions Results indicate fiducial positioning accuracy and system output following fiducial displacement depends?on the number of fiducials correlated, displacement distance, and clinical thresholds applied. Displacements ≤4 mm were accurately located, but some displacements 6-16 mm were misrepresented, either by erroneous main contributor (two-fiducial array only)?or by false-locks and misleading RBE, which underestimated displacement. Operator vigilance and implementation of our practical guidelines based on the study findings may help reduce targeting error and assist troubleshooting in clinical situations.
机译:简介射波刀的基本假设? (美国加利福尼亚州桑尼维尔市Accuray公司)基准跟踪系统是:i)基准位置被准确检测; ii)基准点之间的几何形状保持一致(刚性); iii)检测到基准之间的几何阵列变化,并进行校正或中断治疗。但是:i)软组织靶标是可变形的,可以进行基准迁移; ii)跟踪系统的精度以前未通过基准位移进行过检查; iii)由于基准点之间的几何变化可能会导致治疗中断,但是几乎没有可用的信息来帮助后续的故障排除。本研究的目的是模拟由两个,三个或四个基准阵列定义的临床目标,其中一个基准被置换以模仿目标变形或基准迁移情况。目的:评估基准定位精度,阵列解释以及Cyber​​Knife系统的相应校正,以协助在基准位移后进行故障排除。方法构造了一个新颖的固体水体模,其中包括三个固定基准点(F1,F2,F3)和一个可移动基准点(F4),它们的排列方式似乎是为了跟踪假想的临床目标。使用两个基准点(F1,F4),三个基准点(F1,F2,F4,F1,F3,F4,F2,F3,F4)或四个基准点(F1,F2,F3,F4)的不同组合,进行重复实验在ΔF4从0-16mm以2mm间隔向下移位的情况下进行。在F4的每个位置获取数据,包括刚体误差(RBE),基准x,y,?&z坐标位移,六自由度(DOF)校正和机器人质量中心(COM)平移校正。结果三个固定基准点的参考坐标与实时x,y和z坐标之间的最大定位差(mean±SD)为0.08±0.30 mm,这证明了固定基准点配准的准确性较高。对于两个基准点(F1,F4),F4配准精确到14毫米位移,F4 x轴坐标变化为2.0±0.12毫米,每2毫米以下位移,验证了体模进行跟踪评估。在6-14 mm F4位移下,RBE> 5 mm(系统阈值):但是,F1被误认为是RBE的主要贡献者。此外,在F4位移为16 mm且相应的RBE为13 mm时,发生了F1 / F4错误锁定。对于三个基准点的组合,F4定位精确到10毫米位移。在6-16毫米F4位移下RBE> 5毫米:但是,在6-16毫米RBE为5-6毫米时发生F4错误锁定。对于四个基准,F4配准精确到4 mm位移:但是,在6-16 mm位移下发生F4假锁定,分别在6和8 mm F4位移下引起RBE <2&<5。假锁很容易在幻像中识别出来,但经常无法纠正。结论结果表明,基准定位精度和基准位移后的系统输出取决于相关的基准数量,位移距离和所应用的临床阈值。精确定位了≤4mm的位移,但通过错误的主要贡献者(仅适用于两个基准阵列)或由于误锁和误导性的RBE(误估计了位移)而误示了一些6-16 mm的位移。操作员保持警惕并根据研究结果执行我们的实用指南,可能有助于减少定位错误并在临床情况下帮助解决问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号