首页> 外文期刊>Computational Astrophysics and Cosmology >Implicit large eddy simulations of anisotropic weakly compressible turbulence with application to core-collapse supernovae
【24h】

Implicit large eddy simulations of anisotropic weakly compressible turbulence with application to core-collapse supernovae

机译:各向异性弱可压缩湍流的隐式大涡模拟及其在核塌陷超新星中的应用

获取原文
           

摘要

Abstract In the implicit large eddy simulation (ILES) paradigm, the dissipative nature of high-resolution shock-capturing schemes is exploited to provide an implicit model of turbulence. The ILES approach has been applied to different contexts, with varying degrees of success. It is the de-facto standard in many astrophysical simulations and in particular in studies of core-collapse supernovae (CCSN). Recent 3D simulations suggest that turbulence might play a crucial role in core-collapse supernova explosions, however the fidelity with which turbulence is simulated in these studies is unclear. Especially considering that the accuracy of ILES for the regime of interest in CCSN, weakly compressible and strongly anisotropic, has not been systematically assessed before. Anisotropy, in particular, could impact the dissipative properties of the flow and enhance the turbulent pressure in the radial direction, favouring the explosion. In this paper we assess the accuracy of ILES using numerical methods most commonly employed in computational astrophysics by means of a number of local simulations of driven, weakly compressible, anisotropic turbulence. Our simulations employ several different methods and span a wide range of resolutions. We report a detailed analysis of the way in which the turbulent cascade is influenced by the numerics. Our results suggest that anisotropy and compressibility in CCSN turbulence have little effect on the turbulent kinetic energy spectrum and a Kolmogorov k ? 5 / 3 $k^{-5/3}$ scaling is obtained in the inertial range. We find that, on the one hand, the kinetic energy dissipation rate at large scales is correctly captured even at low resolutions, suggesting that very high “effective Reynolds number” can be achieved at the largest scales of the simulation. On the other hand, the dynamics at intermediate scales appears to be completely dominated by the so-called bottleneck effect, i.e., the pile up of kinetic energy close to the dissipation range due to the partial suppression of the energy cascade by numerical viscosity. An inertial range is not recovered until the point where high resolution ~512_(3), which would be difficult to realize in global simulations, is reached. We discuss the consequences for CCSN simulations.
机译:摘要在隐式大涡模拟(ILES)范例中,利用高分辨率的激波捕获方案的耗散性来提供隐式湍流模型。 ILES方法已应用于不同的情况,并取得了不同程度的成功。在许多天体物理模拟中,尤其是在核塌陷超新星(CCSN)的研究中,它是事实上的标准。最近的3D模拟表明,湍流可能在核心坍塌的超新星爆炸中起关键作用,但是在这些研究中模拟湍流的保真度尚不清楚。特别是考虑到以前尚未系统评估ILES在CCSN中感兴趣的机制(可压缩性和强各向异性)的准确性。各向异性尤其会影响流的耗散特性,并增加径向的湍流压力,有利于爆炸。在本文中,我们通过对驱动的弱可压缩各向异性湍流进行的局部模拟,使用计算天体物理学中最常用的数值方法来评估ILES的准确性。我们的仿真采用了几种不同的方法,并且涵盖了广泛的分辨率。我们报告了湍流级联受数字影响的方式的详细分析。我们的结果表明,CCSN湍流的各向异性和可压缩性对湍动能谱和Kolmogorov k?几乎没有影响。在惯性范围内获得5/3 $ k ^ {-5/3} $缩放。我们发现,一方面,即使在低分辨率下,也可以正确捕获大尺度下的动能耗散率,这表明可以在最大规模的模拟中实现很高的“有效雷诺数”。另一方面,在中间尺度上的动力学似乎完全被所谓的瓶颈效应所支配,即,由于数值粘度部分地抑制了能量级联,动能的堆积接近耗散范围。直到达到高分辨率〜512_(3)为止,惯性范围不会恢复,高分辨率在全局模拟中很难实现。我们讨论了CCSN模拟的后果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号