...
首页> 外文期刊>Climate Risk Management >Decision-centric adaptation appraisal for water management across Colorado’s Continental Divide
【24h】

Decision-centric adaptation appraisal for water management across Colorado’s Continental Divide

机译:以决策为中心的适应性评估,用于科罗拉多州大陆分水岭的水管理

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Highlights ? We modeled the Upper Colorado River with the WEAP DSS. ? Climate and land surface changes on flow, storage and diversion rights were estimated. ? Drought response measures were implemented in the model. ? Warmer and drier scenarios reduce Colorado River flows and transbasin diversions. ? Drought measures were shown to have a small impact on transbasin water diversions. Abstract A multi-step decision support process was developed and applied to the physically and legally complex case of water diversions from the Upper Colorado River across the Continental Divide to serve cities and farms along Colorado’s Front Range. We illustrate our approach by simulating the performance of an existing drought-response measure, the Shoshone Call Relaxation Agreement (SCRA) [the adaptation measure], using the Water Evaluation and Planning (WEAP) tool [the hydrologic cycle and water systems model]; and the Statistical DownScaling Model (SDSM-DC) [the stochastic climate scenario generator]. Scenarios relevant to the decision community were analyzed and results indicate that this drought management measure would provide only a small storage benefit in offsetting the impacts of a shift to a warmer and drier future climate coupled with related environmental changes. The analysis demonstrates the importance of engaging water managers in the development of credible and computationally efficient decision support tools that accurately capture the physical, legal and contractual dimensions of their climate risk management problems. prs.rt("abs_end"); Keywords Decision-centric assessment ; Integrated modeling ; Water law ; Drought Introduction There is a growing recognition that planning for adaptation to climate change must proceed despite the limited predictability of hydro-climatic changes on temporal and spatial scales relevant for water resource planning ( WUCA, 2010 , Miller, 2010 , Yates and Miller, 2011 , Deser et al., 2012a and Deser et al., 2012b ). There are irreducible uncertainties in multi-decadal regional climate projections ( Kundzewicz and Stakhiv, 2010 and Pielke and Wilby, 2012 ) with internal climate system variability playing the dominant role in driving that uncertainty, especially for precipitation projections over the next half century ( Hawkins and Sutton, 2010 , Deser et al., 2012a and Deser et al., 2012b ). In addition, recognized limitations of regional climate downscaling further impair the utility of climate model output for decision-making ( Salzmann and Mearns, 2012 ). The conventional “top down” approach to providing advice for adaptation planning is poorly suited to the task. That approach involves downscaling future climate scenarios, generating input data for impact models, evaluating the consequences relative to present climate, and finally considering adaptation responses. Typically, large uncertainties attached to climate model scenarios accrue into even larger uncertainties in downscaled regional climate change scenarios and impacts. Planners are then left with an intractable range of possibilities, and may habitually resort to “low regret” decisions ( World Bank Independent Evaluation Group, 2012 ). These are measures that are believed to yield benefits regardless of the climate outlook. Although that may be a safe strategy, a more pro-active planning approach may yield better results. Water management professionals increasingly comprehend the value of a systematic risk-management approach to adaptation planning that focuses on identifying and reducing vulnerabilities to a plausible range of climate scenarios, while maintaining the flexibility to respond to evolving conditions ( WUCA, 2010 and Lempert et al., 2006 ). A useful approach for such planning is to turn the traditional top-down framework upside down and place greater emphasis on identifying and appraising adaptation choices from the outset ( Wilby and Dessai, 2010 ). In this configuration, the scenario is used much later in the process to evaluate the performance or “stress test” adaptation decisions. As such, the scenario does not need to be explicitly tied to a given climate model or ensemble. For example, plausible futures can be generated stochastically ( Steinschneider and Brown, 2013 and Nazemi et al., 2013 ) and then used to test the sensitivity of the system, ideally to reveal non-linear or threshold behaviors to the climate-forcing (as in Brown et al., 2011 , Brown and Wilby, 2012 , Lopez et al., 2009 , Prudhomme et al., 2010 , Stakhiv, 2011 and Whitehead et al., 2006 ). This paper demonstrates how downscaling and water systems models can be used in ways that focus the effort on evaluating adaptation measures despite large uncertainty about future climatic and non-climatic stressors. Our collaborative decision support process comprises four elements ( Fig. 1 ): (i) identifying management practice(s) or adaptation option(s) to be evaluated; (ii) modelling the water supply through physical representation of the hy
机译:强调 ?我们使用WEAP DSS为科罗拉多河上游建模。 ?估算了气候和地表在流量,储存和转移权方面的变化。 ?在模型中实施了干旱应对措施。 ?较温暖和较干燥的情况减少了科罗拉多河的流量和跨流域的转移。 ?干旱措施对跨流域调水影响很小。摘要开发了一个多步骤决策支持流程,并将其应用于从科罗拉多河上游穿越大陆分水岭的物理上和法律上复杂的引水案例,以服务科罗拉多州前线的城市和农场。我们通过使用水评估和计划(WEAP)工具[水文循环和水系统模型],模拟现有干旱响应措施(肖肖尼人放宽协议(SCRA)[适应措施])的性能来说明我们的方法;以及统计缩减模型(SDSM-DC)[随机气候情景生成器]。分析了与决策群体有关的场景,结果表明,这种干旱管理措施只能带来很小的存储效益,可以抵消向更温暖,更干燥的未来气候以及相关环境变化的影响。该分析表明,让水管理人员参与开发可靠且计算效率高的决策支持工具的重要性,该决策工具可准确捕获其气候风险管理问题的物理,法律和合同方面。 prs.rt(“ abs_end”);关键词以决策为中心的评估;集成建模;水法;干旱简介人们越来越认识到,尽管与水资源规划相关的时空尺度上的水文气候变化可预测性有限,但必须继续进行适应气候变化的规划(WUCA,2010; Miller,2010; Yates和Miller,2011; Deser等,2012a和Deser等,2012b)。在多年代际区域气候预测中存在不可减少的不确定性(Kundzewicz和Stakhiv,2010年以及Pielke和Wilby,2012年),内部气候系统的可变性是驱动这种不确定性的主要因素,尤其是下半个世纪的降水预测(Hawkins和Sutton,2010; Deser等,2012a和Deser等,2012b)。此外,公认的区域气候缩减规模的局限性进一步削弱了气候模型输出在决策中的效用(Salzmann和Mearns,2012年)。为适应计划提供建议的常规“自上而下”方法不适合该任务。该方法涉及缩小未来气候情景的规模,为影响模型生成输入数据,评估相对于当前气候的后果以及最后考虑适应措施。通常,与气候模式情景相关的较大不确定性会在缩小规模的区域气候变化情景及其影响中带来更大的不确定性。然后,规划人员将面临各种棘手的可能性,并且可能习惯于诉诸“低遗憾”的决策(世界银行独立评估小组,2012年)。这些措施被认为会带来收益,而与气候前景无关。尽管这可能是一个安全的策略,但更主动的计划方法可能会产生更好的结果。水管理专业人士越来越多地认识到系统的风险管理方法在适应计划中的价值,该方法着重于识别和减少脆弱性到合理的气候情景范围,同时保持了对不断变化的条件做出响应的灵活性(WUCA,2010和Lempert等人。 ,2006)。这种规划的一种有用方法是颠覆传统的自上而下的框架,并从一开始就更加强调识别和评估适应选择(Wilby和Dessai,2010年)。在此配置中,该方案在流程的后期使用,以评估性能或“压力测试”适应决策。因此,该场景无需明确地与给定的气候模型或整体关联。例如,可以随机生成有前途的期货(Steinschneider和Brown,2013; Nazemi等,2013),然后将其用于测试系统的敏感性,理想情况下是揭示对气候强迫的非线性或临界行为(如(例如,Brown等,2011; Brown和Wilby,2012; Lopez等,2009; Prudhomme等,2010; Stakhiv,2011和Whitehead等,2006)。本文演示了如何使用降尺度和水系统模型,尽管未来气候和非气候压力因素存在很大不确定性,但如何将其重点放在评估适应措施上。我们的协作决策支持流程包括四个要素(图1):(i)确定要评估的管理实践或适应方案; (ii)通过物理表示水的方式对供水进行建模

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号