首页> 外文期刊>Climate of the Past Discussions >The simulated climate of the Last Glacial Maximum and insights into the global marine carbon cycle
【24h】

The simulated climate of the Last Glacial Maximum and insights into the global marine carbon cycle

机译:最后一次冰期最大值的模拟气候以及对全球海洋碳循环的认识

获取原文
       

摘要

The ocean's ability to store large quantities of carbon, combined with the millennial longevity over which this reservoir is overturned, has implicated the ocean as a key driver of glacial–interglacial climates. However, the combination of processes that cause an accumulation of carbon within the ocean during glacial periods is still under debate. Here we present simulations of the Last Glacial Maximum (LGM) using the CSIRO Mk3L-COAL (Carbon–Ocean–Atmosphere–Land) earth system model to test the contribution of physical and biogeochemical processes to ocean carbon storage. For the LGM simulation, we find a significant global cooling of the surface ocean (3.2°C) and the expansion of both minimum and maximum sea ice cover broadly consistent with proxy reconstructions. The glacial ocean stores an additional 267PgC in the deep ocean relative to the pre-industrial (PI) simulation due to stronger Antarctic Bottom Water formation. However, 889PgC is lost from the upper ocean via equilibration with a lower atmospheric CO2 concentration and a global decrease in export production, causing a net loss of carbon relative to the PI ocean. The LGM deep ocean also experiences an oxygenation (?>?100mmolO2m?3) and deepening of the calcite saturation horizon (exceeds the ocean bottom) at odds with proxy reconstructions. With modifications to key biogeochemical processes, which include an increased export of organic matter due to a simulated release from iron limitation, a deepening of remineralisation and decreased inorganic carbon export driven by cooler temperatures, we find that the carbon content of the glacial ocean can be sufficiently increased (317PgC) to explain the reduction in atmospheric and terrestrial carbon at the LGM (194±2 and 330±400PgC, respectively). Assuming an LGM–PI difference of 95ppmpCO2, we find that 55ppm can be attributed to the biological pump, 28ppm to circulation changes and the remaining 12ppm to solubility. The biogeochemical modifications also improve model–proxy agreement in export production, carbonate chemistry and dissolved oxygen fields. Thus, we find strong evidence that variations in the oceanic biological pump exert a primary control on the climate.
机译:海洋储存大量碳的能力,再加上该储层被推翻的千年寿命,已经暗示海洋是冰川间气候的主要驱动力。但是,在冰川期导致海洋中碳积累的过程的组合仍在争论中。在这里,我们使用CSIRO Mk3L-COAL(碳-海洋-大气-陆地)地球系统模型对最后冰期最大值(LGM)进行模拟,以测试物理和生物地球化学过程对海洋碳存储的贡献。对于LGM模拟,我们发现表层海洋(3.2°C)出现了明显的全球降温,最小和最大海冰覆盖范围的扩大与代理重建基本一致。与前工业化(PI)模拟相比,由于南极底部水的形成更强,冰川海洋在深海中还可以存储267 PgC。但是,由于大气CO2浓度较低和全球出口产量下降而产生的平衡,889PgC从上层海洋中流失,导致相对于PI海洋而言,碳净损失。 LGM深海也经历了氧合作用(?>?100mmolO2m?3)和方解石饱和层的加深(超过海底),与代理重建不符。通过对关键生物地球化学过程的修改,包括由于铁限制释放的模拟释放而增加了有机物的出口,再矿化的加深以及由于温度较低而导致的无机碳出口减少,我们发现冰川海洋的碳含量可以降低。足够增加(317PgC)来解释LGM大气和陆地碳的减少(分别为194±2和330±400PgC)。假设LGM-PI差异为95ppmpCO2,我们发现55ppm可归因于生物泵,28ppm可归因于循环变化,其余12ppm归因于溶解度。生物地球化学修饰还改善了出口生产,碳酸盐化学和溶解氧领域中的模型代理协议。因此,我们发现有力的证据表明,海洋生物泵中的变化对气候起了主要控制作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号