首页> 外文期刊>China Foundry >Development and application of inverse heat transfer model between liquid metal and shot sleeve in high pressure die casting process under non-shooting condition
【24h】

Development and application of inverse heat transfer model between liquid metal and shot sleeve in high pressure die casting process under non-shooting condition

机译:非射流条件下高压压铸过程中液态金属与喷丸筒反向传热模型的开发与应用

获取原文
           

摘要

To predict the heat transfer behavior of A380 alloy in a shot sleeve, a numerical approach (inverse method) is used and validated by high pressure die casting (HPDC) experiment under non-shooting condition. The maximum difference between the measured and calculated temperature profiles is smaller than 3 ℃ , which suggests that the inverse method can be used to predict the heat transfer behavior of alloys in a shot sleeve. Furthermore, the results indicate an increase in maximum interfacial heat flux density (qmax) and heat transfer coefficient (hmax) with an increase in sleeve filling ratio, especially at the pouring zone (S2 zone). In addition, the values of initial temperature (TIDS) and maximum shot sleeve surface temperature (Tsimax) at the two end zones (S2 and S10) are higher than those at the middle zone (S5). Moreover, in comparison with fluctuations in heat transfer coefficient (h) with time at the two end zones (S2 and S10), 2.4-6.5 kW ·m -2 ·K -1, 3.5-12.5 kW ·m -2 ·K -1, respectively, more fluctuations are found at S5 zone, 2.1-14.7 kW ·m -2 ·K -1. These differences could theoretically explain the formation of the three zones: smooth pouring zone, un-smooth middle zone and smooth zone, with different morphologies in the metal log under the non-shot casting condition. Finally, our calculations also reveal that the values of qmax and hmax cast at 680 ℃ are smaller than those cast at 660 ℃ and at 700 ℃ .
机译:为了预测喷丸套筒中A380合金的传热行为,使用了数值方法(逆方法),并通过非压射条件下的高压压铸(HPDC)实验进行了验证。实测和计算的温度曲线之间的最大差值小于3℃,这表明逆方法可用于预测散装套筒中合金的传热行为。此外,结果表明,最大界面热通量密度(qmax)和传热系数(hmax)随着套管填充率的增加而增加,特别是在浇注区(S2区)。另外,在两个端部区域(S2和S10)的初始温度(TIDS)和最大压射套表面温度(Tsimax)的值高于中间区域(S5)的值。此外,与在两个端部区域(S2和S10)处的传热系数(h)随时间的波动相比,2.4-6.5 kW·m -2·K -1、3.5-12.5 kW·m -2·K-如图1所示,在S5区2.1-14.7 kW·m -2·K -1处发现了更多的波动。这些差异在理论上可以解释三个区域的形成:光滑浇铸区,不光滑的中间区和光滑区,在非喷铸条件下,金属原木的形态不同。最后,我们的计算还表明,在680℃铸造的qmax和hmax值小于在660℃和700℃铸造的qmax和hmax值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号