...
首页> 外文期刊>China Steel Technical Report >Adaptive Mold Level Control in a Continuous Steel Slab Casting Process
【24h】

Adaptive Mold Level Control in a Continuous Steel Slab Casting Process

机译:板坯连铸过程中的自适应结晶器液位控制

获取原文

摘要

Surface quality of the steel slabs in a Continuous Casting (C.C.) process is mainly determined by the stability of the Mold Level Control (MLC). Excessive mold level fluctuations lead to an additional machine scarfing process which is applied to the slabs to avoid surface defects. A conventional Proportional-Integral-Derivative (PID) controller is not robust enough to deal with the disturbances caused by the hydraulic pressure hunting in a withdrawing system, submerged entry nozzle clogging, or unsteady bulging. Different types of mold level fluctuations can be observed online through the realization of Fast Fourier Transform (FFT) algorithms. An adaptive control logic was developed based on the calculations of the Accumulated Mold Level (Acc.ML) deviations and the results of mold level FFT, which enables choosing a phase-lead compensator, a phase-lag compensator, a sliding mode controller or a standing wave filter automatically in a MLC loop to restrain fluctuations. At China Steel (CSC), the value of Acc.ML deviations in a minute determines if a slab is going to be machined or not. Each of these control methods corresponds to a specific type of mold level fluctuation. Depending on the statistics, the phase-lead compensator is mostly triggered during the silicon steel casting, and the sliding mode controller is normally run in a peritectic steel casting. The phase-lag compensator lowers both the mold level fluctuating frequency and the Acc.ML deviations in most kinds of steel casting. A low-pass filter is adopted to eliminate the influence of the surface standing waves on the flow control actuator. These adaptive MLC methods were resident online in CSC #5 and #4 slab C.C. since 2011 and 2012 respectively, and also tested in #2 slab C.C. at Dragon Steel (DSC) in 2013. The stability is improved apparently after the accomplishment of the adaptive MLC in a continuous steel slab casting process.
机译:连铸(C.C.)工艺中钢坯的表面质量主要取决于结晶度控制(MLC)的稳定性。过多的模具高度波动会导致附加的机器刮毛工艺,该工艺会应用到板坯上以避免表面缺陷。传统的比例积分微分(PID)控制器的鲁棒性不足以应对由抽油系统中的液压压力波动,浸入式喷嘴堵塞或不稳定膨胀引起的干扰。通过快速傅立叶变换(FFT)算法的实现,可以在线观察到不同类型的模具高度波动。根据累积模具水平(Acc.ML)偏差的计算和模具水平FFT的结果,开发了一种自适应控制逻辑,可以选择相位超前补偿器,相位滞后补偿器,滑模控制器或MLC回路中的驻波滤波​​器会自动抑制波动。在中钢(CSC),一分钟内的Acc.ML偏差值决定了是否要加工板坯。这些控制方法中的每一种都对应于特定类型的模具高度波动。根据统计数据,相位超前补偿器通常在硅钢铸造过程中触发,而滑模控制器通常在包晶钢铸造过程中运行。相位滞后补偿器可降低大多数铸钢件的结晶器液位波动频率和Acc.ML偏差。采用低通滤波器以消除表面驻波对流量控制执行器的影响。这些自适应MLC方法在线驻留在CSC#5和#4平板C.C中。分别从2011年和2012年开始,并且还在#2平板C.C.在2013年的Dragon Steel(DSC)上进行。在连续钢坯连铸过程中完成自适应MLC后,稳定性明显得到了提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号