首页> 外文期刊>Chemical science >Influence of structure–activity relationships on through-space intervalence charge transfer in metal–organic frameworks with cofacial redox-active units
【24h】

Influence of structure–activity relationships on through-space intervalence charge transfer in metal–organic frameworks with cofacial redox-active units

机译:结构-活性关系对具有界面氧化还原活性单元的金属-有机骨架中空间间隔电荷转移的影响

获取原文
           

摘要

Understanding charge transfer in redox-active metal–organic frameworks (MOFs) is of fundamental importance given the potential of these materials to be used in myriad applications including porous conductors, electrocatalysts and battery materials, amongst others. An important challenge is quantifying the spectroscopic features of these materials in order to elucidate their charge transfer properties. Herein, two topologically related Zn( II ) and Cd( II ) frameworks, [Zn _(2) (DPPTzTz) _(2) (SDC) _(2) ] ( 1-Zn ) and [Cd _(2) (DPPTzTz) _(2) (SDC) _(2) ] ( 2-Cd ) (where DPPTzTz = 2,5-bis(4-(4-pyridinyl)phenyl)thiazolo[5,4- d ]thiazole and SDC = selenophene-2,5-dicarboxylate), incorporating cofacially stacked pairs of redox-active DPPTzTz ligands are presented. The differences in the through-space intervalence charge transfer properties of the mixed-valence forms of the two frameworks generated upon solid state spectroelectrochemical reduction are quantified using Marcus–Hush theory. Further, charge transfer theory is applied to calculate electron mobilities in both extended framework systems. A larger electronic coupling constant, H _(ab) , of 118 cm ~(?1) corresponding to an electron mobility, k , of 6.02 × 10 ~(8) s ~(?1) was observed for the Zn( II ) analogue compared to the Cd( II ) analogue ( H _(ab) = 61.2 cm ~(?1) and k = 2.22 × 10 ~(8) s ~(?1) ) and was correlated primarily with the larger cofacial stacking distance and increasingly offset stacking geometry between DPPTzTz ligands in the latter. Establishing structure–activity relationships in electroactive MOFs, in addition to methods for quantifying their charge transfer properties, represents an important advance in fine tuning solid state materials for device applications.
机译:考虑到这些材料在无数应用中的潜力,包括多孔导体,电催化剂和电池材料等,了解氧化还原活性金属有机框架(MOF)中的电荷转移至关重要。一个重要的挑战是量化这些材料的光谱特征,以阐明其电荷转移特性。在这里,两个拓扑相关的Zn(II)和Cd(II)框架,[Zn _(2)(DPPTzTz)_(2)(SDC)_(2)](1-Zn)和[Cd _(2)( DPPTzTz)_(2)(SDC)_(2)](2-Cd)(其中DPPTzTz = 2,5-双(4-(4-吡啶基)苯基)噻唑并[5,4- d]噻唑和SDC =提出了硒化的2,5-二羧酸亚硒酸酯,其结合了氧化还原活性DPPTzTz配体的表面堆叠对。使用Marcus-Hush理论定量分析了固态光谱电化学还原后生成的两个骨架的混合价形式在空间间隔中的电荷转移性质的差异。此外,电荷转移理论被用于计算两个扩展框架系统中的电子迁移率。对于Zn(II),观察到较大的电子耦合常数H _(ab)为118 cm〜(?1),对应于6.02×10〜(8)s〜(?1)的电子迁移率k。与Cd(II)类似物相比(H _(ab)= 61.2 cm〜(?1)和k = 2.22×10〜(8)s〜(?1)),并且主要与较大的界面堆积距离相关并逐渐抵消了后者中DPPTzTz配体之间的堆叠几何形状。除了量化其电荷转移特性的方法外,在电活性MOF中建立结构与活性的关系还代表着微调固态材料在器件应用中的重要进展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号