首页> 外文期刊>Canadian Journal of Biotechnology >Profiling the patterns of miRNAs and transcriptome of human vasculature under micro-gravity: A template study using space science for solving health problems on the Earth
【24h】

Profiling the patterns of miRNAs and transcriptome of human vasculature under micro-gravity: A template study using space science for solving health problems on the Earth

机译:在微重力下分析人类脉管系统的miRNA和转录组模式:使用空间科学解决地球健康问题的模板研究

获取原文
           

摘要

Microgravity (MG) offers a unique condition, which promotes cellular growth and functions. MG can yield three-dimensional tissue specimens mimicking natural growth and easier self-association of cells unlike traditional cultures. The vascular system is capable of remodeling its structure surprisingly in short time frame and adaptation to new environment. Treatment of endothelial monolayer and embryo vascular plexus with simulated MG resulted in an increase in tube formation and angiogenesis. Our findings indicate that simulated MG driven angiogenesis was mediated by iNOS-cGMP pathway. Further, we checked whether microgravity sensitization maintained the functionality of endothelial cells. Towards this, we performed the tube formation assay of microgravity-treated endothelial cells. Microgravity-stimulated endothelial cells have shown to form more tubes as compared to cells under gravity. Next, we explored possibilities for the applications. We hypothesized that microgravity sensitized endothelial cells may prove to hasten wound healing process by re-establishing rapid angiogenesis at wound site. We examined the effect of microgravity on wound healing using rat model and observed that microgravity hastens the wound healing process as second degree burn wounds implanted with microgravity sensitized endothelial cells have shown to heal faster in rat model. Finally, we performed deep sequencing of miRNA followed by genome wide transcriptome sequencing of microgravity sensitized endothelial cells to unravel the mechanism of microgravity induced angiogenesis. An extensive analysis of the data including differential miRNA expression profile, heatmap showing relative expression of miRNA, comparative expression profile between miRNA and their mRNA targets detected under microgravity condition, were performed. The analysis documented up-regulation of miRNAs related to angiogenesis and their related pathways. Present study infers that microgravity sensitized endothelial cells promotes angiogenesis, which can be used as a primer to ensure an efficient wound healing process. An in-depth deep sequencing study confirms that microgravity sensitizes the genome of human endothelial cells to promote angiogenesis and thereby wound healing.
机译:微重力(MG)提供了独特的条件,可促进细胞生长和功能。 MG可以产生三维组织标本,该标本可以模仿自然生长,并且与传统培养不同,可以更轻松地实现细胞的自缔合。血管系统能够在短时间内惊人地重塑其结构,并适应新环境。用模拟的MG治疗内皮单层和胚胎血管丛导致管形成和血管生成增加。我们的发现表明,模拟的MG驱动的血管生成是由iNOS-cGMP途径介导的。此外,我们检查了微重力敏化是否维持了内皮细胞的功能。为此,我们进行了微重力处理的内皮细胞的管形成试验。与重力作用下的细胞相比,微重力刺激的内皮细胞已显示形成更多的管。接下来,我们探索了应用程序的可能性。我们假设微重力致敏的内皮细胞可通过在伤口部位重新建立快速的血管生成而证明可加速伤口愈合过程。我们使用大鼠模型检查了微重力对伤口愈合的影响,并观察到微重力加速了伤口愈合过程,因为植入了微重力致敏内皮细胞的二级烧伤伤口在大鼠模型中显示出更快的愈合速度。最后,我们对miRNA进行了深度测序,然后对微重力致敏的内皮细胞进行了全基因组转录组测序,以揭示微重力诱导的血管生成的机制。对数据进行了广泛的分析,包括差异miRNA表达谱,显示miRNA相对表达的热图,在微重力条件下检测到的miRNA及其mRNA靶标之间的比较表达谱。该分析记录了与血管生成及其相关途径有关的miRNA的上调。本研究推断微重力致敏的内皮细胞可促进血管生成,可将其用作引物以确保有效的伤口愈合过程。一项深入的深度测序研究证实,微重力可使人内皮细胞的基因组敏感,从而促进血管生成,从而促进伤口愈合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号