...
首页> 外文期刊>Biogeosciences >Isotopic composition of dissolved inorganic nitrogen in high mountain lakes: variation with altitude in the Pyrenees
【24h】

Isotopic composition of dissolved inorganic nitrogen in high mountain lakes: variation with altitude in the Pyrenees

机译:高山湖泊中溶解的无机氮的同位素组成:比利牛斯山脉随海拔的变化

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Nitrogen deposition in remote areas has increased, but the effect onecosystems is still poorly understood. For aquatic systems, knowledge of themain processes driving the observed variation is limited, as is knowledge ofhow changes in nitrogen supply affect lake biogeochemical and food webprocesses. Differences in dissolved inorganic nitrogen (DIN) between lakescannot be understood without considering catchment characteristics. Inmountains, catchment features (e.g., thermal conditions, land cover) varyconsiderably with elevation. The isotopic composition of nitrogen (δ15N)is increasingly used to study aquatic ecosystem dynamics. Here weexplore the variability of δ15N in DIN in high mountain lakesand show that environmental conditions that change with altitude can affectthe isotopic ratio.We measured ammonium and nitrate δ15N values in atmosphericdeposition, epilimnetic water, deep chlorophyll maximum water (DCMW) andsediment pore water (SPW) from eight mountain lakes in the Pyrenees, bothabove and below the treeline. Lakes showed relatively uniform δ15N-NH4+values in SPW (2.2±1.6‰), with no variationcorresponding to catchment or lake characteristics. We suggest that organicmatter diagenesis under similar sediment conditions is responsible for thelow variation between the lakes.In the water column, the range of δ15N values was larger forammonium (−9.4‰ to 7.4‰) than for nitrate (−11.4‰ to −3.4‰), as a result ofhigher variation both between and within lakes (epilimnetic vs. DCM water).For both compounds part of the difference correlated with altitude orcatchment features (e.g., scree proportion). Based on concentration,chemical and isotopic tendencies, we suggest that patterns arise from thedistinct relative contributions of two types of water flow paths to thelakes: one from snowpack melting, with little soil interaction; and anotherhighly influenced by soil conditions. The snow-type flow path contributeslow DIN concentrations depleted in 15N, whereas the soil-type flow pathcontributes high nitrate concentrations with higher δ15N. Theproportion of these two types of source correlates with average catchmentfeatures when there is extensive snow cover during spring and early summerand probably becomes more dependent on local characteristics around the lakeas summer advances. Lake depth and pore water ammonium concentrations, amongother features, introduce secondary variation. In the context of nitrogendeposition studies, lakes with higher snow-type influence will probablyregister changes in N deposition and pollution sources better, whereas lakeswith higher soil-type influence may reflect long-term effects of vegetationand soil dynamics.
机译:偏远地区的氮沉降增加了,但是对生态系统的影响仍然知之甚少。对于水生系统,了解驱动观测到的变化的主要过程的知识是有限的,关于氮供应的变化如何影响湖泊生物地球化学和食物网过程的知识也有限。如果不考虑集水特征,就不能理解湖泊之间溶解的无机氮(DIN)的差异。山峰,集水区特征(例如,热条件,土地覆盖)随海拔高度变化很大。氮的同位素组成(δ 15 N)被越来越多地用于研究水生生态系统的动力学。在此我们探索了高山湖泊中DIN中δ 15 N的变化,并表明随海拔高度变化的环境条件会影响同位素比。 我们测量了铵和硝酸盐δ 15 在比利牛斯山脉上方和下方的八个高山湖泊中,大气沉积物,表皮水,深层叶绿素最大水(DCMW)和沉积物孔隙水(SPW)中的N值。湖泊中SPW的δ 15 N-NH 4 + 值相对均匀(2.2±1.6‰),与流域或湖泊特征无对应变化。我们认为,在相似的沉积条件下,有机物的成岩作用是造成湖泊之间较低的变化的原因。 在水柱中,δ 15 N值的范围是较大的铵盐(-9.4‰比硝酸盐(−11.4‰至-3.4‰)高至7.4‰),这是由于湖泊之间和湖泊内部(滴水与DCM水)变化较大的结果。对于两种化合物,差异的一部分与海拔或集水特征有关(例如,碎石比例)。根据浓度,化学和同位素趋势,我们认为模式是由于两种类型的水流路径对湖泊的明显相对贡献而产生的:一种是积雪融化,几乎没有土壤相互作用;另一种是积雪融化。另一个受土壤条件的影响很大。雪型流道贡献了 15 N的低DIN浓度,而土壤型流道贡献了较高的δ 15 N的高硝酸盐浓度。当春季和夏季初有大面积积雪时,这两种类型的水源的比例与平均集水量特征相关,并且随着夏季的进行,可能会更多地取决于湖泊周围的局部特征。湖泊的深度和孔隙水中铵盐的浓度等特征引起了二次变化。在氮沉降研究的背景下,雪类型影响较大的湖泊可能会更好地记录氮沉降和污染源的变化,而土壤类型影响较大的湖泊可能反映了植被和土壤动力学的长期影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号