首页> 外文期刊>Bulletin of materials science >Synthesis of Fea€“Sia€“Ba€“Mn-based nanocrystalline magnetic alloys with large coercivity by high energy ball milling
【24h】

Synthesis of Fea€“Sia€“Ba€“Mn-based nanocrystalline magnetic alloys with large coercivity by high energy ball milling

机译:高能球磨法合成高矫顽力的Fe_Sia_Ba_Ba_Mn基纳米晶磁性合金

获取原文
           

摘要

Alloys of Fea€“Sia€“B with varying compositions of Mn were prepared using high energy planetary ball mill for maximum duration of 120 h. X-ray diffraction (XRD) analysis suggests that Si gets mostly dissolved into Fe after 80 h of milling for all compositions. The residual Si was found to form an intermetallic Fe3Si. The dissolution was further confirmed from the field emission scanning electron microscopy/energy dispersive X-ray analysis (FE-SEM/EDX). With increased milling time, the lattice parameter and lattice strain are found to increase. However, the crystallite size decreases from micrometer (75a€“95 e???m) to nanometer (10a€“20 nm). M??ssbauer spectra analysis suggests the presence of essentially ferromagnetic phases with small percentage of super paramagnetic phase in the system. The saturation magnetization (e?‘€s), remanance (e?‘€r) and coercivity (e???c) values for Fea€“0Mn sample after 120 h of milling were 96.4 Am2/kg, 11.5 Am2/kg and 12.42 k Am-1, respectively. However, for Fea€“10Mna€“5Cu sample the e?‘€s, e???c and e?‘€r values were found to be 101.9 Am2/kg, 10.98 kA/m and 12.4 Am2/kg, respectively. The higher value of magnetization could be attributed to the favourable coupling between Mn and Cu.
机译:使用高能行星式球磨机制备了Mn含量不同的Fea“ Sia” B合金,最长持续时间为120 h。 X射线衍射(XRD)分析表明,对于所有成分,在研磨80小时后,Si大部分溶解在Fe中。发现残留的Si形成金属间的Fe 3 Si。通过场发射扫描电子显微镜/能量色散X射线分析(FE-SEM / EDX)进一步证实了溶解。随着研磨时间的增加,发现晶格参数和晶格应变增加。但是,微晶尺寸从微米(75a“ 95 e?m)减小到纳米(10a'20 nm)。 M sssbauer光谱分析表明,系统中存在基本为铁磁性的相,且超顺磁性相的百分比很小。饱和磁化强度(e?' s ),剩磁(e?' r )和矫顽力(e ??? c )的值研磨120 h后Fea'0Mn样品的96.4 Am 2 /kg、11.5 Am 2 / kg和12.42 k Am -1 , 分别。但是,对于Fea“ 10Mna” 5Cu样品,应采样e?' s ,e ??? c 和e?' r 值分别为101.9 Am 2 /kg、10.98 kA / m和12.4 Am 2 / kg。较高的磁化强度可归因于Mn和Cu之间的良好耦合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号