...
首页> 外文期刊>BMC Neuroscience >Differential production of superoxide by neuronal mitochondria
【24h】

Differential production of superoxide by neuronal mitochondria

机译:神经元线粒体差异产生超氧化物

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Background Mitochondrial DNA (mtDNA) mutations, which are present in all mitochondria-containing cells, paradoxically cause tissue-specific disease. For example, Leber's hereditary optic neuropathy (LHON) results from one of three point mutations mtDNA coding for complex I components, but is only manifested in retinal ganglion cells (RGCs), a central neuron contained within the retina. Given that RGCs use superoxide for intracellular signaling after axotomy, and that LHON mutations increase superoxide levels in non-RGC transmitochondrial cybrids, we hypothesized that RGCs regulate superoxide levels differently than other neuronal cells. To study this, we compared superoxide production and mitochondrial electron transport chain (METC) components in isolated RGC mitochondria to mitochondria isolated from cerebral cortex and neuroblastoma SK-N-AS cells. Results In the presence of the complex I substrate glutamate/malate or the complex II substrate succinate, the rate of superoxide production in RGC-5 cells was significantly lower than cerebral or neuroblastoma cells. Cerebral but not RGC-5 or neuroblastoma cells increased superoxide production in response to the complex I inhibitor rotenone, while neuroblastoma but not cerebral or RGC-5 cells dramatically decreased superoxide production in response to the complex III inhibitor antimycin A. Immunoblotting and real-time quantitative PCR of METC components demonstrated different patterns of expression among the three different sources of neuronal mitochondria. Conclusion RGC-5 mitochondria produce superoxide at significantly lower rates than cerebral and neuroblastoma mitochondria, most likely as a result of differential expression of complex I components. Diversity in METC component expression and function could explain tissue specificity in diseases associated with inherited mtDNA abnormalities.
机译:背景存在于所有含线粒体细胞中的线粒体DNA(mtDNA)突变自相矛盾地引起组织特异性疾病。例如,莱伯(Leber)的遗传性视神经病变(LHON)是由编码复杂I成分的mtDNA的三个点突变之一引起的,但仅在视网膜神经节细胞(RGCs)(包含在视网膜内的中央神经元)中表现出来。鉴于RGC在轴切术后使用超氧化物进行细胞内信号传导,并且LHON突变增加了非RGC线粒体杂种中超氧化物的水平,我们假设RGC调节超氧化物的水平不同于其他神经元细胞。为了研究这一点,我们比较了分离的RGC线粒体中的超氧化物生成和线粒体电子传输链(METC)组件与从大脑皮层和神经母细胞瘤SK-N-AS细胞中分离的线粒体。结果在存在复合物I底物谷氨酸/苹果酸盐或复合物II底物琥珀酸盐的情况下,RGC-5细胞中超氧化物产生的速率显着低于脑或神经母细胞瘤细胞。响应复合物I抑制剂鱼藤酮,大脑而非RGC-5或神经母细胞瘤细胞增加了超氧化物的产生,而响应复合物III抑制剂抗霉素A,神经母细胞瘤而非脑或RGC-5细胞显着降低了过氧化物的产生。免疫印迹和实时METC组分的定量PCR证实了神经元线粒体的三种不同来源之间的不同表达模式。结论RGC-5线粒体产生超氧化物的速率明显低于脑和神经母细胞瘤线粒体,这很可能是由于复杂的I成分差异表达所致。 METC成分表达和功能的多样性可以解释与遗传性mtDNA异常相关的疾病的组织特异性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号