...
首页> 外文期刊>BioData Mining >Identifying time-delayed gene regulatory networks via an evolvable hierarchical recurrent neural network
【24h】

Identifying time-delayed gene regulatory networks via an evolvable hierarchical recurrent neural network

机译:通过可演化的分层递归神经网络识别延时基因调控网络

获取原文

摘要

Background The modeling of genetic interactions within a cell is crucial for a basic understanding of physiology and for applied areas such as drug design. Interactions in gene regulatory networks (GRNs) include effects of transcription factors, repressors, small metabolites, and microRNA species. In addition, the effects of regulatory interactions are not always simultaneous, but can occur after a finite time delay, or as a combined outcome of simultaneous and time delayed interactions. Powerful biotechnologies have been rapidly and successfully measuring levels of genetic expression to illuminate different states of biological systems. This has led to an ensuing challenge to improve the identification of specific regulatory mechanisms through regulatory network reconstructions. Solutions to this challenge will ultimately help to spur forward efforts based on the usage of regulatory network reconstructions in systems biology applications. Methods We have developed a hierarchical recurrent neural network (HRNN) that identifies time-delayed gene interactions using time-course data. A customized genetic algorithm (GA) was used to optimize hierarchical connectivity of regulatory genes and a target gene. The proposed design provides a non-fully connected network with the flexibility of using recurrent connections inside the network. These features and the non-linearity of the HRNN facilitate the process of identifying temporal patterns of a GRN. Results Our HRNN method was implemented with the Python language. It was first evaluated on simulated data representing linear and nonlinear time-delayed gene-gene interaction models across a range of network sizes and variances of noise. We then further demonstrated the capability of our method in reconstructing GRNs of the Saccharomyces cerevisiae synthetic network for in vivo benchmarking of reverse-engineering and modeling approaches (IRMA). We compared the performance of our method to TD-ARACNE, HCC-CLINDE, TSNI and ebdbNet across different network sizes and levels of stochastic noise. We found our HRNN method to be superior in terms of accuracy for nonlinear data sets with higher amounts of noise. Conclusions The proposed method identifies time-delayed gene-gene interactions of GRNs. The topology-based advancement of our HRNN worked as expected by more effectively modeling nonlinear data sets. As a non-fully connected network, an added benefit to HRNN was how it helped to find the few genes which regulated the target gene over different time delays.
机译:背景技术细胞内遗传相互作用的建模对于基本了解生理学和药物设计等应用领域至关重要。基因调控网络(GRN)中的相互作用包括转录因子,阻遏物,小代谢物和microRNA种类的影响。此外,调节相互作用的影响并不总是同时发生的,而是可能在有限的时间延迟后发生,或者同时发生和时间延迟相互作用的共同结果。强大的生物技术已经迅速成功地测量了基因表达的水平,以阐明生物系统的不同状态。这就带来了随之而来的挑战,即通过监管网络的重建来改进对特定监管机制的识别。解决该挑战的方法最终将有助于基于系统生物学应用程序中监管网络重建的使用来推动工作。方法我们已经开发了一种分层递归神经网络(HRNN),可以使用时程数据来识别延时基因相互作用。使用定制的遗传算法(GA)来优化调节基因和目标基因的层次连通性。提出的设计为非完全连接的网络提供了在网络内部使用循环连接的灵活性。 HRNN的这些功能和非线性特性有助于识别GRN的时间模式。结果我们的HRNN方法是使用Python语言实现的。它首先在模拟数据上进行了评估,该模拟数据表示在一系列网络大小和噪声方差范围内的线性和非线性时间延迟的基因-基因相互作用模型。然后,我们进一步证明了我们的方法在重建酿酒酵母合成网络的GRN中用于反向工程和建模方法(IRMA)的体内基准测试的能力。我们比较了在不同网络规模和随机噪声水平下,我们的方法与TD-ARACNE,HCC-CLINDE,TSNI和ebdbNet的性能。我们发现,对于具有大量噪声的非线性数据集,我们的HRNN方法具有更高的精度。结论所提出的方法鉴定了GRNs的时延基因-基因相互作用。通过更有效地对非线性数据集建模,HRNN的基于拓扑的改进按预期工作。作为一个非完全连接的网络,HRNN的另一个好处是它如何帮助找到在不同时间延迟下调节靶基因的少数基因。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号