首页> 外文期刊>BMC Biology >Double-strand break repair processes drive evolution of the mitochondrial genome in Arabidopsis
【24h】

Double-strand break repair processes drive evolution of the mitochondrial genome in Arabidopsis

机译:双链断裂修复过程驱动拟南芥中线粒体基因组的进化

获取原文
           

摘要

Background The mitochondrial genome of higher plants is unusually dynamic, with recombination and nonhomologous end-joining ( NHEJ ) activities producing variability in size and organization. Plant mitochondrial DNA also generally displays much lower nucleotide substitution rates than mammalian or yeast systems. Arabidopsis displays these features and expedites characterization of the mitochondrial recombination surveillance gene MSH1 ( MutS 1 homolog), lending itself to detailed study of de novo mitochondrial genome activity. In the present study, we investigated the underlying basis for unusual plant features as they contribute to rapid mitochondrial genome evolution. Results We obtained evidence of double-strand break (DSB) repair, including NHEJ , sequence deletions and mitochondrial asymmetric recombination activity in Arabidopsis wild-type and msh1 mutants on the basis of data generated by Illumina deep sequencing and confirmed by DNA gel blot analysis. On a larger scale, with mitochondrial comparisons across 72 Arabidopsis ecotypes, similar evidence of DSB repair activity differentiated ecotypes. Forty-seven repeat pairs were active in DNA exchange in the msh1 mutant. Recombination sites showed asymmetrical DNA exchange within lengths of 50- to 556-bp sharing sequence identity as low as 85%. De novo asymmetrical recombination involved heteroduplex formation, gene conversion and mismatch repair activities. Substoichiometric shifting by asymmetrical exchange created the appearance of rapid sequence gain and loss in association with particular repeat classes. Conclusions Extensive mitochondrial genomic variation within a single plant species derives largely from DSB activity and its repair. Observed gene conversion and mismatch repair activity contribute to the low nucleotide substitution rates seen in these genomes. On a phenotypic level, these patterns of rearrangement likely contribute to the reproductive versatility of higher plants.
机译:背景高等植物的线粒体基因组异常活跃,具有重组和非同源末端连接(NHEJ)活性,会在大小和组织上产生差异。通常,植物线粒体DNA的核苷酸取代率也比哺乳动物或酵母系统低得多。拟南芥显示了这些特征,并加速了线粒体重组监测基因MSH1(MutS 1同源物)的表征,从而有助于对线粒体基因组新活性的详细研究。在本研究中,我们调查了异常植物特征的潜在基础,因为它们有助于线粒体基因组快速进化。结果根据Illumina深度测序产生的数据并通过DNA凝胶印迹分析证实,我们获得了拟南芥野生型和msh1突变体中双链断裂(DSB)修复的证据,包括NHEJ,序列缺失和线粒体不对称重组活性。在更大范围内,通过对72种拟南芥生态型的线粒体进行比较,DSB修复活性的相似证据也将生态型区分开。 47个重复对在msh1突变体的DNA交换中具有活性。重组位点显示不对称的DNA交换在50-556 bp的长度内,共有序列同一性低至85%。从头不对称重组涉及异源双链体形成,基因转换和错配修复活动。通过不对称交换进行的亚化学计量转换产生了与特定重复类别相关的快速序列增减现象。结论单一植物物种中广泛的线粒体基因组变异主要来自DSB活性及其修复。观察到的基因转化和错配修复活性有助于在这些基因组中发现低核苷酸取代率。在表型水平上,这些重排模式可能有助于高等植物的生殖多功能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号