...
首页> 外文期刊>BMC Systems Biology >Global parameter search reveals design principles of the mammalian circadian clock
【24h】

Global parameter search reveals design principles of the mammalian circadian clock

机译:全局参数搜索揭示了哺乳动物生物钟的设计原理

获取原文

摘要

Background Virtually all living organisms have evolved a circadian (~24 hour) clock that controls physiological and behavioural processes with exquisite precision throughout the dayight cycle. The suprachiasmatic nucleus (SCN), which generates these ~24 h rhythms in mammals, consists of several thousand neurons. Each neuron contains a gene-regulatory network generating molecular oscillations, and the individual neuron oscillations are synchronised by intercellular coupling, presumably via neurotransmitters. Although this basic mechanism is currently accepted and has been recapitulated in mathematical models, several fundamental questions about the design principles of the SCN remain little understood. For example, a remarkable property of the SCN is that the phase of the SCN rhythm resets rapidly after a 'jet lag' type experiment, i.e. when the light/dark (LD) cycle is abruptly advanced or delayed by several hours. Results Here, we describe an extensive parameter optimization of a previously constructed simplified model of the SCN in order to further understand its design principles. By examining the top 50 solutions from the parameter optimization, we show that the neurotransmitters' role in generating the molecular circadian rhythms is extremely important. In addition, we show that when a neurotransmitter drives the rhythm of a system of coupled damped oscillators, it exhibits very robust synchronization and is much more easily entrained to light/dark cycles. We were also able to recreate in our simulations the fast rhythm resetting seen after a 'jet lag' type experiment. Conclusion Our work shows that a careful exploration of parameter space for even an extremely simplified model of the mammalian clock can reveal unexpected behaviours and non-trivial predictions. Our results suggest that the neurotransmitter feedback loop plays a crucial role in the robustness and phase resetting properties of the mammalian clock, even at the single neuron level.
机译:背景技术实际上,所有活生物体都已进化出昼夜节律(约24小时),以昼夜周期精确地控制生理和行为过程。在哺乳动物中产生这些〜24 h节律的视交叉上核(SCN)由数千个神经元组成。每个神经元都包含一个产生分子振荡的基因调控网络,单个神经元振荡通过细胞间耦合(大概是通过神经递质)同步进行。尽管此基本机制目前已被接受,并已在数学模型中进行了概括,但有关SCN设计原理的几个基本问​​题仍然鲜为人知。例如,SCN的显着特性是,在“时差”型实验后,即当明/暗(LD)周期突然提前或延迟了几个小时之后,SCN节奏的相位会迅速重置。结果在这里,我们描述了先前构建的SCN简化模型的广泛参数优化,以进一步了解其设计原理。通过检查参数优化中的前50个解决方案,我们表明神经递质在产生分子昼夜节律中的作用极为重要。此外,我们表明,当神经递质驱动耦合阻尼振荡器系统的节奏时,它表现出非常强大的同步性,并且更容易被带入明暗周期。在“时差”型实验后,我们还能够在模拟中重新创建快速的节奏重置。结论我们的工作表明,即使对于极为简化的哺乳动物时钟模型,对参数空间的仔细探索也可以揭示出意料之外的行为和非平凡的预测。我们的结果表明,即使在单个神经元水平,神经递质反馈回路在哺乳动物时钟的鲁棒性和相位重置特性中也起着至关重要的作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号