...
首页> 外文期刊>BMC Systems Biology >Architecture of transcriptional regulatory circuits is knitted over the topology of bio-molecular interaction networks
【24h】

Architecture of transcriptional regulatory circuits is knitted over the topology of bio-molecular interaction networks

机译:转录调控电路的体系结构编织在生物分子相互作用网络的拓扑结构之上

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Background Uncovering the operating principles underlying cellular processes by using 'omics' data is often a difficult task due to the high-dimensionality of the solution space that spans all interactions among the bio-molecules under consideration. A rational way to overcome this problem is to use the topology of bio-molecular interaction networks in order to constrain the solution space. Such approaches systematically integrate the existing biological knowledge with the 'omics' data. Results Here we introduce a hypothesis-driven method that integrates bio-molecular network topology with transcriptome data, thereby allowing the identification of key biological features (Reporter Features) around which transcriptional changes are significantly concentrated. We have combined transcriptome data with different biological networks in order to identify Reporter Gene Ontologies, Reporter Transcription Factors, Reporter Proteins and Reporter Complexes, and use this to decipher the logic of regulatory circuits playing a key role in yeast glucose repression and human diabetes. Conclusion Reporter Features offer the opportunity to identify regulatory hot-spots in bio-molecular interaction networks that are significantly affected between or across conditions. Results of the Reporter Feature analysis not only provide a snapshot of the transcriptional regulatory program but also are biologically easy to interpret and provide a powerful way to generate new hypotheses. Our Reporter Features analyses of yeast glucose repression and human diabetes data brings hints towards the understanding of the principles of transcriptional regulation controlling these two important and potentially closely related systems.
机译:背景技术由于解决方案空间的高维性跨越了所考虑的生物分子之间的所有相互作用,因此利用“组学”数据揭示细胞过程背后的操作原理通常是一项艰巨的任务。解决此问题的一种合理方法是使用生物分子相互作用网络的拓扑结构,以约束溶液空间。此类方法将现有的生物学知识与“组学”数据系统地整合在一起。结果在这里,我们介绍了一种假设驱动的方法,该方法将生物分子网络拓扑与转录组数据整合在一起,从而可以识别转录变化明显集中的关键生物学特征(记者特征)。我们将转录组数据与不同的生物网络相结合,以鉴定报告基因本体论,报告转录因子,报告蛋白质和报告复合体,并以此来解释在酵母葡萄糖抑制和人类糖尿病中起关键作用的调节电路的逻辑。结论Reporter功能提供了在生物分子相互作用网络中识别在条件之间或条件之间受到显着影响的调节热点的机会。记者特征分析的结果不仅提供了转录调控程序的快照,而且在生物学上也易于解释,并提供了产生新假设的强大方法。我们的记者特征分析酵母抑制葡萄糖和人类糖尿病数据为理解控制这两个重要且可能密切相关的系统的转录调控原理提供了提示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号