首页> 外文期刊>BMC Systems Biology >Multi-objective optimization framework to obtain model-based guidelines for tuning biological synthetic devices: an adaptive network case
【24h】

Multi-objective optimization framework to obtain model-based guidelines for tuning biological synthetic devices: an adaptive network case

机译:多目标优化框架,以获取基于模型的生物合成设备调整指南:自适应网络案例

获取原文
           

摘要

Background Model based design plays a fundamental role in synthetic biology. Exploiting modularity, i.e. using biological parts and interconnecting them to build new and more complex biological circuits is one of the key issues. In this context, mathematical models have been used to generate predictions of the behavior of the designed device. Designers not only want the ability to predict the circuit behavior once all its components have been determined, but also to help on the design and selection of its biological parts, i.e. to provide guidelines for the experimental implementation. This is tantamount to obtaining proper values of the model parameters, for the circuit behavior results from the interplay between model structure and parameters tuning. However, determining crisp values for parameters of the involved parts is not a realistic approach. Uncertainty is ubiquitous to biology, and the characterization of biological parts is not exempt from it. Moreover, the desired dynamical behavior for the designed circuit usually results from a trade-off among several goals to be optimized. Results We propose the use of a multi-objective optimization tuning framework to get a model-based set of guidelines for the selection of the kinetic parameters required to build a biological device with desired behavior. The design criteria are encoded in the formulation of the objectives and optimization problem itself. As a result, on the one hand the designer obtains qualitative regions/intervals of values of the circuit parameters giving rise to the predefined circuit behavior; on the other hand, he obtains useful information for its guidance in the implementation process. These parameters are chosen so that they can effectively be tuned at the wet-lab, i.e. they are effective biological tuning knobs. To show the proposed approach, the methodology is applied to the design of a well known biological circuit: a genetic incoherent feed-forward circuit showing adaptive behavior. Conclusion The proposed multi-objective optimization design framework is able to provide effective guidelines to tune biological parameters so as to achieve a desired circuit behavior. Moreover, it is easy to analyze the impact of the context on the synthetic device to be designed. That is, one can analyze how the presence of a downstream load influences the performance of the designed circuit, and take it into account.
机译:基于背景模型的设计在合成生物学中起着基本作用。利用模块化,即使用生物部件并将它们互连以建立新的和更复杂的生物电路是关键问题之一。在这种情况下,数学模型已用于生成所设计设备的行为的预测。设计人员不仅希望能够在确定其所有组件后就能够预测电路的行为,还希望能够帮助设计和选择其生物学部件,即为实验实现提供指导。这相当于获得适当的模型参数值,因为电路行为是由模型结构和参数调整之间的相互作用引起的。但是,确定所涉及零件的参数的明晰值不是现实的方法。不确定性是生物学无处不在的,生物学部分的表征也不例外。此外,所设计电路的期望动态行为通常是由要优化的几个目标之间的权衡所导致的。结果我们建议使用多目标优化调整框架来获取基于模型的指导方针,以选择构建具有所需行为的生物装置所需的动力学参数。设计标准编码在目标和优化问题本身的表述中。结果,一方面,设计者获得了引起预定义的电路行为的电路参数值的定性区域/间隔。另一方面,他在实施过程中获得了有用的指导信息。选择这些参数以便可以在湿实验室有效地对其进行调节,即它们是有效的生物调节旋钮。为了展示所提出的方法,该方法被应用于设计了一个众所周知的生物电路:遗传不相干的前馈电路,显示了自适应行为。结论所提出的多目标优化设计框架能够提供有效的准则来调节生物学参数,从而实现所需的电路性能。此外,很容易分析上下文对要设计的合成设备的影响。即,可以分析并考虑下游负载的存在如何影响设计电路的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号