...
首页> 外文期刊>BMC Evolutionary Biology >Phylogenetic analysis of condensation domains in NRPS sheds light on their functional evolution
【24h】

Phylogenetic analysis of condensation domains in NRPS sheds light on their functional evolution

机译:NRPS中缩合结构域的系统进化分析揭示了它们的功能进化

获取原文
           

摘要

Background Non-ribosomal peptide synthetases (NRPSs) are large multimodular enzymes that synthesize a wide range of biologically active natural peptide compounds, of which many are pharmacologically important. Peptide bond formation is catalyzed by the Condensation (C) domain. Various functional subtypes of the C domain exist: An LCL domain catalyzes a peptide bond between two L-amino acids, a DCL domain links an L-amino acid to a growing peptide ending with a D-amino acid, a Starter C domain (first denominated and classified as a separate subtype here) acylates the first amino acid with a β-hydroxy-carboxylic acid (typically a β-hydroxyl fatty acid), and Heterocyclization (Cyc) domains catalyze both peptide bond formation and subsequent cyclization of cysteine, serine or threonine residues. The homologous Epimerization (E) domain flips the chirality of the last amino acid in the growing peptide; Dual E/C domains catalyze both epimerization and condensation. Results In this paper, we report on the reconstruction of the phylogenetic relationship of NRPS C domain subtypes and analyze in detail the sequence motifs of recently discovered subtypes (Dual E/C, DCL and Starter domains) and their characteristic sequence differences, mutually and in comparison with LCL domains. Based on their phylogeny and the comparison of their sequence motifs, LCL and Starter domains appear to be more closely related to each other than to other subtypes, though pronounced differences in some segments of the protein account for the unequal donor substrates (amino vs. β-hydroxy-carboxylic acid). Furthermore, on the basis of phylogeny and the comparison of sequence motifs, we conclude that Dual E/C and DCL domains share a common ancestor. In the same way, the evolutionary origin of a C domain of unknown function in glycopeptide (GP) NRPSs can be determined to be an LCL domain. In the case of two GP C domains which are most similar to DCL but which have LCL activity, we postulate convergent evolution. Conclusion We systematize all C domain subtypes including the novel Starter C domain. With our results, it will be easier to decide the subtype of unknown C domains as we provide profile Hidden Markov Models (pHMMs) for the sequence motifs as well as for the entire sequences. The determined specificity conferring positions will be helpful for the mutation of one subtype into another, e.g. turning DCL to LCL, which can be a useful step for obtaining novel products.
机译:背景技术非核糖体肽合成酶(NRPS)是大型的多模块酶,可合成多种具有生物活性的天然肽化合物,其中许多在药理学上都很重要。肽键的形成由缩合(C)域催化。存在C结构域的各种功能亚型: L C L 结构域催化两个L-氨基酸之间的肽键, D C < sub> L 结构域将L-氨基酸与正在生长的以D-氨基酸结尾的肽相连,Starter C结构域(首先在此处命名并分类为单独的亚型)将第一个氨基酸用β-酰化羟基羧酸(通常为β-羟基脂肪酸)和杂环(Cyc)域既催化肽键的形成,又催化半胱氨酸,丝氨酸或苏氨酸残基的环化。同源差向异构(E)域破坏了正在生长的肽中最后一个氨基酸的手性。双E / C结构域催化差向异构和缩合。结果在本文中,我们报告了NRPS C域亚型的系统发育关系的重建,并详细分析了最近发现的亚型(双E / C, D C L < / sub>和Starter域)及其特征序列差异(与 L C L 域相比)。基于它们的系统发育和序列基序的比较, L C L 和Starter域似乎比其他亚型更紧密相关,尽管在蛋白质的某些片段占供体底物不等(氨基和β-羟基羧酸)。此外,基于系统发育和序列基序的比较,我们得出结论,双重E / C和 D C L 结构域具有共同的祖先。同样,可以确定糖肽(GP)NRPS中功能未知的C结构域的进化起源是 L C L 结构域。如果是两个与 D C L 最相似但具有 L C L 的GP C域活动,我们假设收敛进化。结论我们将所有C域亚型系统化,包括新颖的Starter C域。根据我们的结果,由于我们为序列基序以及整个序列提供了配置文件隐式马尔可夫模型(pHMM),因此可以更轻松地确定未知C结构域的亚型。确定的赋予特异性的位置将有助于将一种亚型突变为另一种亚型。将 D C L 变为 L C L ,这对于获得新颖产品可能是有用的步骤。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号