...
首页> 外文期刊>Biotechnology for Biofuels >Exploitation of algal-bacterial associations in a two-stage biohydrogen and biogas generation process
【24h】

Exploitation of algal-bacterial associations in a two-stage biohydrogen and biogas generation process

机译:在两阶段生物氢气和沼气产生过程中利用藻类细菌缔合

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Background The growing concern regarding the use of agricultural land for the production of biomass for food/feed or energy is dictating the search for alternative biomass sources. Photosynthetic microorganisms grown on marginal or deserted land present a promising alternative to the cultivation of energy plants and thereby may dampen the ‘food or fuel’ dispute. Microalgae offer diverse utilization routes. Results A two-stage energetic utilization, using a natural mixed population of algae (Chlamydomonas sp. and Scenedesmus sp.) and mutualistic bacteria (primarily Rhizobium sp.), was tested for coupled biohydrogen and biogas production. The microalgal-bacterial biomass generated hydrogen without sulfur deprivation. Algal hydrogen production in the mixed population started earlier but lasted for a shorter period relative to the benchmark approach. The residual biomass after hydrogen production was used for biogas generation and was compared with the biogas production from maize silage. The gas evolved from the microbial biomass was enriched in methane, but the specific gas production was lower than that of maize silage. Sustainable biogas production from the microbial biomass proceeded without noticeable difficulties in continuously stirred fed-batch laboratory-size reactors for an extended period of time. Co-fermentation of the microbial biomass and maize silage improved the biogas production: The metagenomic results indicated that pronounced changes took place in the domain Bacteria, primarily due to the introduction of a considerable bacterial biomass into the system with the substrate; this effect was partially compensated in the case of co-fermentation. The bacteria living in syntrophy with the algae apparently persisted in the anaerobic reactor and predominated in the bacterial population. The Archaea community remained virtually unaffected by the changes in the substrate biomass composition. Conclusion Through elimination of cost- and labor-demanding sulfur deprivation, sustainable biohydrogen production can be carried out by using microalgae and their mutualistic bacterial partners. The beneficial effect of the mutualistic mixed bacteria in O2 quenching is that the spent algal-bacterial biomass can be further exploited for biogas production. Anaerobic fermentation of the microbial biomass depends on the composition of the biogas-producing microbial community. Co-fermentation of the mixed microbial biomass with maize silage improved the biogas productivity.
机译:背景技术对于使用农业土地来生产用于食物/饲料或能源的生物质的日益关注,促使人们寻找替代的生物质来源。在边缘或荒芜土地上生长的光合作用微生物是种植能源植物的有前途的替代方法,因此可以减轻“食物或燃料”争端。微藻提供了多种利用途径。结果测试了两个阶段的能量利用,利用藻类(衣藻属(Chlamydomonas sp。)和Scenedesmus sp。)和互生细菌(主要是根瘤菌属(Rhizobium sp。))的自然混合种群来进行生物氢和沼气的耦合生产。微藻细菌生物质产生的氢没有硫的剥夺。与基准方法相比,混合人群中藻类氢的生产开始较早,但持续时间较短。制氢后残留的生物质用于沼气的生产,并与玉米青贮饲料的沼气进行比较。由微生物生物质产生的气体富含甲烷,但比气产量低于玉米青贮饲料。在连续搅拌的间歇式实验室规模反应器中,从微生物生物质可持续生产沼气的过程没有明显困难,并且持续了很长时间。微生物生物量和玉米青贮饲料的共同发酵改善了沼气的产生:宏基因组学结果表明,细菌域发生了显着变化,这主要是由于将大量细菌生物量与底物一起引入系统的缘故。在共同发酵的情况下,这种作用被部分补偿。与藻类共生的细菌显然存在于厌氧反应器中,并在细菌种群中占主导地位。古细菌群落实际上不受底物生物质组成的变化的影响。结论通过消除对成本和劳动力的需求,可以利用微藻及其互生细菌伙伴实现可持续的生物制氢。相互混合的细菌在O2淬灭中的有益效果是,废藻类生物质可以进一步用于沼气生产。微生物生物量的厌氧发酵取决于产生沼气的微生物群落的组成。混合微生物生物量与玉米青贮饲料的共同发酵提高了沼气的生产率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号