首页> 外文期刊>Biotechnology for Biofuels >Increasing the metabolic capacity of Escherichia coli for hydrogen production through heterologous expression of the Ralstonia eutropha SH operon
【24h】

Increasing the metabolic capacity of Escherichia coli for hydrogen production through heterologous expression of the Ralstonia eutropha SH operon

机译:通过富营养的Ralstonia eutropha SH operon的异源表达提高大肠杆菌的产氢代谢能力

获取原文
获取外文期刊封面目录资料

摘要

Background Fermentative hydrogen production is an attractive means for the sustainable production of this future energy carrier but is hampered by low yields. One possible solution is to create, using metabolic engineering, strains which can bypass the normal metabolic limits to substrate conversion to hydrogen. Escherichia coli can degrade a variety of sugars to hydrogen but can only convert electrons available at the pyruvate node to hydrogen, and is unable to use the electrons available in NADH generated during glycolysis. Results Here, the heterologous expression of the soluble [NiFe] hydrogenase from Ralstonia eutropha H16 (the SH hydrogenase) was used to demonstrate the introduction of a pathway capable of deriving substantial hydrogen from the NADH generated by fermentation. Successful expression was demonstrated by in vitro assay of enzyme activity. Moreover, expression of SH restored anaerobic growth on glucose to adhE strains, normally blocked for growth due to the inability to re-oxidize NADH. Measurement of in vivo hydrogen production showed that several metabolically engineered strains were capable of using the SH hydrogenase to derive 2 mol H2 per mol of glucose consumed, close to the theoretical maximum. Conclusion Previous introduction of heterologous [NiFe] hydrogenase in E. coli led to NAD(P)H dependent activity, but hydrogen production levels were very low. Here we have shown for the first time substantial in vivo hydrogen production by a heterologously expressed [NiFe] hydrogenase, the soluble NAD-dependent H2ase of R. eutropha (SH hydrogenase). This hydrogenase was able to couple metabolically generated NADH to hydrogen production, thus rescuing an alcohol dehydrogenase (adhE) mutant. This enlarges the range of metabolism available for hydrogen production, thus potentially opening the door to the creation of greatly improved hydrogen production. Strategies for further increasing yields should revolve around making additional NADH available.
机译:背景技术发酵氢气的生产是可持续生产这种未来能源载体的一种有吸引力的方法,但是产量低。一种可能的解决方案是使用代谢工程技术创建可绕过正常代谢限制而将底物转化为氢的菌株。大肠杆菌可以将多种糖类降解为氢,但只能将丙酮酸节点上可用的电子转换为氢,并且无法使用糖酵解过程中产生的NADH中可用的电子。结果在这里,来自富营养小球藻H16的可溶性[NiFe]氢化酶(SH氢化酶)的异源表达被用来证明能够从发酵产生的NADH中获得大量氢的途径的引入。通过体外酶活性测定证明成功表达。此外,SH的表达将葡萄糖上的无氧生长恢复为adhE菌株,由于无法重新氧化NADH,通常阻止其生长。体内产氢量的测量表明,一些代谢工程菌株能够使用SH氢化酶每摩尔消耗的葡萄糖产生2摩尔H2,接近理论最大值。结论以前在大肠杆菌中引入异源[NiFe]氢化酶可导致NAD(P)H依赖性活性,但氢产生水平非常低。在这里,我们首次显示了异源表达的[NiFe]氢化酶,一种富营养富营养芽孢杆菌的可溶性NAD依赖性H2酶(SH氢化酶),可在体内产生大量氢。该加氢酶能够将代谢产生的NADH与产氢结合,从而拯救了乙醇脱氢酶(adhE)突变体。这扩大了可用于制氢的新陈代谢的范围,因此有可能为大大提高制氢量创造机会。进一步提高单产的策略应围绕提供额外的NADH来进行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号