...
首页> 外文期刊>Biotechnology for Biofuels >Cellulosic ethanol production via consolidated bioprocessing at 75?°C by engineered Caldicellulosiruptor bescii
【24h】

Cellulosic ethanol production via consolidated bioprocessing at 75?°C by engineered Caldicellulosiruptor bescii

机译:通过工程化的Caldicelluloiruptor bescii在75°C下通过合并的生物处理生产纤维素乙醇

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Background The C. bescii genome does not encode an acetaldehyde/alcohol dehydrogenase or an acetaldehyde dehydrogenase and no ethanol production is detected in this strain. The recent introduction of an NADH-dependent AdhE from C. thermocellum (Fig. 1a) in an ldh mutant of this strain resulted in production of ethanol from un-pretreated switchgrass, but the thermolability of the C. thermocellum AdhE at the optimum growth temperature of C. bescii (78 °C) meant that ethanol was not produced above 65 °C. Fig. 1. Proposed scheme for the pyruvate to ethanol pathway in C. thermocellum and T. pseudethanolicus 39E. a The C. thermocellum ethanol pathway. The red colored AdhE (Cthe_0423) is already expressed and tested in C. bescii[26]. b The T. pseudethanolicus 39E ethanol pathway. The green colored AdhE (Teth39_0206) and blue colored AdhB (Teth39_0218) are expressed and tested in C. bescii in this study Results The adhB and adhE genes from Thermoanaerobacter pseudethanolicus 39E, an anaerobic thermophile that produces ethanol as a major fermentation product at 70 °C, were cloned and expressed in an ldh deletion mutant of C. bescii. The engineered strains produced ethanol at 75 °C, near the ethanol boiling point. The AdhB expressing strain produced ethanol (1.4 mM on Avicel, 0.4 mM on switchgrass) as well as acetate (13.0 mM on Avicel, 15.7 mM on switchgrass). The AdhE expressing strain produced more ethanol (2.3 mM on Avicel, 1.6 mM on switchgrass) and reduced levels of acetate (12.3 mM on Avicel, 15.1 mM on switchgrass). These engineered strains produce cellulosic ethanol at the highest temperature of any microorganism to date. In addition, the addition of 40 mM MOPS to the growth medium increased the maximal growth yield of C. bescii by approximately twofold. Conclusions The utilization of thermostable enzymes will be critical to achieving high temperature CBP in bacteria such as C. bescii. The ability to produce ethanol at 75 °C, near its boiling point, raises the possibility that process optimization could allow in situ product removal of this end product to mitigate ethanol toxicity.
机译:背景技术贝氏梭菌基因组不编码乙醛/醇脱氢酶或乙醛脱氢酶,并且在该菌株中未检测到乙醇产生。最近在该菌株的ldh突变体中从热纤梭菌中引入了NADH依赖性AdhE(图1a),导致了未经预处理的柳枝production产生乙醇,但在最佳生长温度下热纤梭菌的热可塑性C. bescii(78°C)的温度表示在65°C以上不会产生乙醇。图1.在热纤毛衣藻和伪乙醇杆菌39E中丙酮酸至乙醇途径的拟议方案。热纤梭菌乙醇途径。红色的AdhE(Cthe_0423)已在C. bescii中表达和测试[26]。 b Pseudethanolicus 39E乙醇途径。在这项研究中,绿色的AdhE(Teth39_0206)和蓝色的AdhB(Teth39_0218)被表达并在C. bescii中进行了测试。结果嗜热厌氧嗜热嗜热菌39E的adhB和adhE基因是在70°C下产生乙醇的主要发酵产物。克隆C1,C1,并在C.bescii的ldh缺失突变体中表达。工程菌株在75°C(接近乙醇沸点)下产生乙醇。表达AdhB的菌株产生乙醇(在Avicel上为1.4 mM,在柳枝0.4上为0.4 mM)以及乙酸盐(在Avicel上为13.0 mM,在柳枝switch上为15.7 mM)。表达AdhE的菌株产生更多的乙醇(在Avicel上为2.3 mM,在柳枝1.6上为1.6 mM)和降低的乙酸盐水平(在Avicel上为12.3 mM,在柳枝switch上为15.1 mM)。这些工程菌株在迄今为止任何微生物的最高温度下产生纤维素乙醇。另外,向生长培养基中添加40 mM MOPS使贝氏梭菌的最大生长产量增加了大约两倍。结论利用热稳定酶对于在细菌如梭状芽胞杆菌中获得高温CBP至关重要。在接近其沸点的75°C下生产乙醇的能力提高了工艺优化可以原位去除该最终产物以减轻乙醇毒性的可能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号