...
首页> 外文期刊>BMC Developmental Biology >Distinct shape-shifting regimes of bowl-shaped cell sheets – embryonic inversion in the multicellular green alga Pleodorina
【24h】

Distinct shape-shifting regimes of bowl-shaped cell sheets – embryonic inversion in the multicellular green alga Pleodorina

机译:碗状细胞片的不同形状转变机制–多细胞绿藻中的胚倒置

获取原文
           

摘要

Background The multicellular volvocine alga Pleodorina is intermediate in organismal complexity between its unicellular relative, Chlamydomonas , and its multicellular relative, Volvox , which shows complete division of labor between different cell types. The volvocine green microalgae form a group of genera closely related to the genus Volvox within the order Volvocales (Chlorophyta). Embryos of multicellular volvocine algae consist of a cellular monolayer that, depending on the species, is either bowl-shaped or comprises a sphere. During embryogenesis, multicellular volvocine embryos turn their cellular monolayer right-side out to expose their flagella. This process is called ‘inversion’ and serves as simple model for epithelial folding in metazoa. While the development of spherical Volvox embryos has been the subject of detailed studies, the inversion process of bowl-shaped embryos is less well understood. Therefore, it has been unclear how the inversion of a sphere might have evolved from less complicated processes. Results In this study we characterized the inversion of initially bowl-shaped embryos of the 64- to 128-celled volvocine species Pleodorina californica . We focused on the movement patterns of the cell sheet, cell shape changes and changes in the localization of cytoplasmic bridges (CBs) connecting the cells. The development of living embryos was recorded using time-lapse light microscopy. Moreover, fixed and sectioned embryos throughout inversion and at successive stages of development were analyzed by light and transmission electron microscopy. We generated three-dimensional models of the identified cell shapes including the localization of CBs. Conclusions In contrast to descriptions concerning volvocine embryos with lower cell numbers, the embryonic cells of P. californica undergo non-simultaneous and non-uniform cell shape changes. In P. californica , cell wedging in combination with a relocation of the CBs to the basal cell tips explains the curling of the cell sheet during inversion. In volvocine genera with lower organismal complexity, the cell shape changes and relocation of CBs are less pronounced in comparison to P. californica , while they are more pronounced in all members of the genus Volvox . This finding supports an increasing significance of the temporal and spatial regulation of cell shape changes and CB relocations with both increasing cell number and organismal complexity during evolution of differentiated multicellularity.
机译:背景技术多细胞火山藻藻(Pleodorina)在其单细胞亲戚衣藻和多细胞亲戚Volvox之间的机体复杂性方面处于中间状态,这表明不同细胞类型之间的分工完全相同。香绿色的微藻类形成了与Volvocales(Chlorophyta)目中的Volvox属密切相关的一组属。多细胞火山藻类的胚胎由一个细胞单层组成,根据物种的不同,该单层为碗形或球形。在胚胎发生过程中,多细胞Volvocine胚胎将其单层细胞的右侧翻出,露出鞭毛。此过程称为“倒置”,可作为后生动物上皮折叠的简单模型。尽管球形Volvox胚胎的发育已成为详细研究的主题,但对碗状胚胎的倒置过程却知之甚少。因此,目前尚不清楚球的倒置是如何从不太复杂的过程演变而来的。结果在这项研究中,我们表征了64到128细胞的山茱le Pleodorina californica最初碗形胚胎的倒置。我们专注于细胞片的运动模式,细胞形状的变化以及连接细胞的细胞质桥(CBs)定位的变化。使用延时光学显微镜记录活胚的发育。此外,通过光镜和透射电子显微镜分析了整个倒置和发育的连续阶段的固定和切片的胚胎。我们生成了已识别细胞形状的三维模型,包括CB的定位。结论与有关具有较少细胞数量的火山胚胎的描述相反,加利福尼亚假单胞菌的胚胎细胞经历了非同时且不均匀的细胞形状变化。在加州假单胞菌中,细胞楔形结合CBs重新定位到基底细胞尖端可解释倒置过程中细胞片的卷曲。在具有较低生物复杂性的植物属中,与加利福尼亚假单胞菌相比,细胞形状的变化和CB的重新定位较不明显,而在Volvox属的所有成员中则更为明显。这一发现支持了在分化的多细胞性的进化过程中,随着细胞数量的增加和机体复杂性的增加,细胞形状变化和CB重定位的时间和空间调节的重要性越来越高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号