...
首页> 外文期刊>Deep-Sea Research >Complementary acoustic and optical methods for characterization of diffuse venting, gas seeps, and biota distributions at hydrothermal systems: A case study at Kick'em Jenny Volcano, Grenada, West Indies
【24h】

Complementary acoustic and optical methods for characterization of diffuse venting, gas seeps, and biota distributions at hydrothermal systems: A case study at Kick'em Jenny Volcano, Grenada, West Indies

机译:互补的声学和光学方法,用于表征热液系统中的扩散排放,气体渗漏和生物群分布:以西印度群岛格林纳达的Kick'em Jenny Volcano为例

获取原文
获取原文并翻译 | 示例

摘要

Quantitatively assessing the impact of hydrothermal circulation on geological and biological systems in submarine environments requires accurate characterization of biota, fluid flow, and, in many shallow systems, gas discharge. In a single vent field, surface expressions of hydrothermal venting and vent biology are often widespread, presenting a significant technical challenge to such characterizations. Typically, attempts to overcome this challenge involve extrapolation of point measurements to estimate field-scale parameters. Extrapolation introduces large uncertainties, however. We present a case study at the Kick’em Jenny Volcano, Grenada, West Indies that jointly applies a set of complementary acoustic and optical measurement methods to significantly reduce uncertainty in field-scale flux estimates of diffuse venting, bubble streams, and distributions of microbial mats. Two classes of ROV-based methods are used: 1) survey-level techniques for accurately locating fluid and gas discharge across entire vent fields, and 2) local techniques that accurately measure fluid or gas fluxes just above a vent orifice. Survey level techniques include a structured light laser system to locate active diffuse venting and biological mats, and a high-resolution downward facing multibeam system that can resolve individual bubble streams separated by only centimeters. Local techniques include processing of stereo imagery to determine bubble stream parameters (rise rate, bubble size) and application of the Diffuse Flow Velocimetry technique to determine upwelling rates of diffuse effluent. Joint application of these methods provides a several times increase in the number of identified bubble streams relative to ship-board systems and a difference of up to 40 times in field-scale diffuse volume flux estimates relative to currently available techniques.
机译:定量评估海底环境中热液循环对地质和生物系统的影响需要对生物群,流体流动以及在许多浅层系统中的气体排放进行准确表征。在单个喷口领域中,热液喷口和喷口生物学的表面表达通常很普遍,对这种表征提出了重大的技术挑战。通常,克服这一挑战的尝试包括对点测量值进行外推以估计场标度参数。但是,推断会带来很大的不确定性。我们在西印度群岛格林纳达的Kick'em珍妮火山进行了案例研究,该案例研究共同应用了一套互补的声学和光学测量方法,以显着降低扩散排放,气泡流和微生物分布的现场规模通量估算的不确定性垫子。使用基于ROV的两类方法:1)用于在整个排气孔内准确定位流体和气体排放的调查级技术,以及2)可以精确测量排气孔正上方的流体或气体通量的局部技术。勘测级技术包括用于定位主动扩散通风口和生物垫的结构化激光系统,以及可以分辨仅几厘米分开的单个气泡流的高分辨率朝下多光束系统。本地技术包括处理立体图像以确定气泡流参数(上升率,气泡大小),以及应用扩散流速度法确定扩散流出物的上升速率。这些方法的联合应用相对于船上系统,使识别出的气泡流数量增加了几倍,并且相对于当前可用技术,现场规模的扩散体积通量估计值相差多达40倍。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号