首页> 外文期刊>Current Pharmaceutical Biotechnology >Parallel Confocal Detection of Single Biomolecules Using Diffractive Optics and Integrated Detector.Units
【24h】

Parallel Confocal Detection of Single Biomolecules Using Diffractive Optics and Integrated Detector.Units

机译:使用衍射光学元件和集成检测器对单个生物分子进行共聚焦平行检测

获取原文
获取原文并翻译 | 示例
       

摘要

The past few years we have witnessed a tremendous surge of interest in so-called array-based miniaturised analytical systems due to their value as extremely powerful tools for high-throughput sequence analysis, drug discovery and development, and diagnostic tests in medicine (see articles in Issue Ⅰ). Terminologies that have been used to describe these array-based bioscience systems include (but are not limited to): DNA-chip, microarrays, microchip, biochip, DNA-microarrays and genome chip. Potential technological benefits of introducing these miniaturised analytical systems include improved accuracy, multiplexing, lower sample and reagent consumption, disposability, and decreased analysis times, just to mention a few examples. Among the many alternative principles of detection-analysis (e.g. chemiluminescence, electroluminescence and conductivity), fluorescence-based techniques are widely used, examples being fluorescence resonance energy transfer, fluorescence quenching, fluorescence polarisation, time-resolved fluorescence, and fluorescence fluctuation spectroscopy (see articles in Issue Ⅱ). Time-dependent fluctuations of fluorescent biomolecules with different molecular properties, like molecular weight, translational and rotational diffusion time, colour and lifetime, potentially provide all the kinetic and thermodynamic information required in analysing complex interactions. In this mini-review article, we present recent extensions aimed to implement parallel laser excitation and parallel fluorescence detection that can lead to even further increase in throughput in miniaturised array-based analytical systems. We also report on developments and characterisations of multiplexing extension that allow multifocal laser excitation together with matched parallel fluorescence detection for parallel confocal dynamical fluorescence fluctuation studies at the single biomolecule level.
机译:在过去的几年中,我们见证了对所谓的基于阵列的微型分析系统的极大兴趣,这是因为它们作为用于高通量序列分析,药物发现和开发以及医学诊断测试的极其强大的工具而具有价值(请参阅文章在第一期)。已用于描述这些基于阵列的生物科学系统的术语包括(但不限于):DNA芯片,微阵列,微芯片,生物芯片,DNA微阵列和基因组芯片。引入这些小型分析系统的潜在技术优势包括提高的准确性,多路复用,更低的样品和试剂消耗,可处理性以及减少的分析时间,仅举几个例子。在检测分析的许多替代原理(例如化学发光,电致发光和电导率)中,基于荧光的技术被广泛使用,例如荧光共振能量转移,荧光猝灭,荧光偏振,时间分辨荧光和荧光波动光谱学(请参见)。第二期的文章)。具有不同分子特性(例如分子量,平移和旋转扩散时间,颜色和寿命)的荧光生物分子随时间的波动可能提供分析复杂相互作用所需的所有动力学和热力学信息。在这篇小型评论文章中,我们介绍了旨在实现并行激光激发和并行荧光检测的最新扩展,这些扩展可以导致基于阵列的小型分析系统的通量进一步提高。我们还报告了多重扩展的发展和特征,这些扩展和特征允许多焦点激光激发以及匹配的平行荧光检测,以在单个生物分子水平上进行平行共焦动态荧光波动研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号