首页> 外文期刊>Current Topics in Medicinal Chemistry >Artificial Neural Networks from MATLAB® in Medicinal Chemistry. Bayesian-Regularized Genetic Neural Networks (BRGNN): Application to the Prediction of the Antagonistic Activity Against Human Platelet Thrombin Receptor (PAR-1)
【24h】

Artificial Neural Networks from MATLAB® in Medicinal Chemistry. Bayesian-Regularized Genetic Neural Networks (BRGNN): Application to the Prediction of the Antagonistic Activity Against Human Platelet Thrombin Receptor (PAR-1)

机译:MATLAB®在药物化学中的人工神经网络。贝叶斯正则化遗传神经网络(BRGNN):在预测人类血小板凝血酶受体(PAR-1)拮抗活性中的应用

获取原文
获取原文并翻译 | 示例
       

摘要

Artificial neural networks (ANNs) have been widely used for medicinal chemistry modeling. In the last two decades, too many reports used MATLAB environment as an adequate platform for programming ANNs. Some of these reports comprise a variety of applications intended to quantitatively or qualitatively describe structure-activity relationships. A powerful tool is obtained when there are combined Bayesian-regularized neural networks (BRANNs) and genetic algorithm (GA): Bayesian-regularized genetic neural networks (BRGNNs). BRGNNs can model complicated relationships between explanatory variables and dependent variables. Thus, this methodology is regarded as useful tool for QSAR analysis. In order to demonstrate the use of BRGNNs, we developed a reliable method for predicting the antagonistic activity of 5-amino-3-arylisoxazole derivatives against Human Platelet Thrombin Receptor (PAR-1), using classical 3D-QSAR methodologies: Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA). In addition, 3D vectors generated from the molecular structures were correlated with antagonistic activities by multivariate linear regression (MLR) and Bayesian-regularized neural networks (BRGNNs). All models were trained with 34 compounds, after which they were evaluated for predictive ability with additional 6 compounds. CoMFA and CoMSIA were unable to describe this structure-activity relationship, while BRGNN methodology brings the best results according to validation statistics.
机译:人工神经网络(ANN)已被广泛用于药物化学建模。在过去的二十年中,太多的报告使用MATLAB环境作为对ANN进行编程的适当平台。这些报告中的一些包含旨在定量或定性描述结构活性关系的各种应用。当贝叶斯正则化神经网络(BRNN)与遗传算法(GA)结合使用时,将获得一个强大的工具:贝叶斯正则化遗传神经网络(BRGNN)。 BRGNN可以对解释变量和因变量之间的复杂关系建模。因此,该方法被认为是进行QSAR分析的有用工具。为了证明BRGNN的使用,我们开发了一种可靠的方法,可使用经典的3D-QSAR方法来预测5-氨基-3-芳基异恶唑衍生物对人血小板凝血酶受体(PAR-1)的拮抗活性:比较分子场分析(CoMFA)和比较分子相似性指标分析(CoMSIA)。此外,通过多元线性回归(MLR)和贝叶斯正则化神经网络(BRGNN),将从分子结构生成的3D向量与拮抗活性相关。所有模型都使用34种化合物进行训练,然后再评估另外6种化合物的预测能力。 CoMFA和CoMSIA无法描述这种构效关系,而BRGNN方法根据验证统计数据可得出最佳结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号