首页> 外文期刊>Coordination chemistry reviews >Recent aspects of aluminium chemistry and biology: a survey
【24h】

Recent aspects of aluminium chemistry and biology: a survey

机译:铝化学与生物学的最新方面:一项调查

获取原文
获取原文并翻译 | 示例
       

摘要

From the time, more than 20 years ago, when Al~(3+) was considered to be toxic and affecting neurological functions―it is so when high doses reach the brain―to today, the advances in understanding the chemistry and in vitro biochemistry of Al~(3+) have been steady and this group of papers reports more gains in our knowledge. It is curious that studies in vivo have yielded very little gain. While one comes away with the general impression that cells have never allowed measurable concentrations of any free Me~(3+) ion to accumulate in them, not just Al~(3+) but Ga~(3+), In~(3+), Cr~(3+), and even Fe~(3+). As free ions―there are many potential binding sites should they gain access to organisms. If the toxicity is fairly general to lipids and proteins then describing it becomes exceedingly difficult. For this reason I missed an account of studies of effects of Al~(3+) on simple cells which can be manipulated in many different ways e.g. using genetics. Turning to therapy, the horny problems of the effects of silicate as a protective agent do not appear to have gained favour. It does seem to be that in most situations, combinations of proteins, especially transferrin, and phosphate and citrate are preferential. Of course silicate may be useful outside organisms to take up Al~(3+) as it does in many minerals. The source of highest organic ligand binding would appear to be phenols as in transferrin, hydroxypyridinone, some ferroxamins and humic acids (note this selectivity is not a choice of 'hard' Al~(3+) interacting with 'hard' acid but is overwhelming due to size selectivity. Al~(3+) is a very small ion and binds best to very small donors e.g. F~- and RO~- (phenolate) rather than -CO_2~-). Clearly, as is true of the study of other metal ions in organisms, much remains to be done to fully appreciate the way Al~(3+) affects living cells and the way in which it can be safely sequestered in higher organisms.
机译:从20多年前开始,当Al〜(3+)被认为具有毒性并影响神经系统功能时-当大剂量到达大脑时就是如此-直到今天,对化学和体外生物化学的理解不断提高Al〜(3+)的分布稳定,这组论文报告了我们的知识有了更多的进步。奇怪的是,体内研究的成果很少。尽管人们普遍认为细胞从未允许可测量浓度的任何游离Me〜(3+)离子在其中积累,但不仅Al〜(3+),而且Ga〜(3 +),In〜(3 +),Cr〜(3+)甚至是Fe〜(3+)。作为自由离子,如果它们可以接触生物,则有许多潜在的结合位点。如果毒性对脂质和蛋白质相当普遍,则描述它就变得非常困难。由于这个原因,我错过了关于Al〜(3+)对简单细胞的研究的报道,Al〜(3+)可以通过许多不同的方式进行操作,例如使用遗传学。转向治疗,硅酸盐作为保护剂的角质问题似乎并未得到解决。似乎在大多数情况下,蛋白质(尤其是转铁蛋白)以及磷酸盐和柠檬酸盐的组合是优先考虑的。当然,硅酸盐可能像许多矿物质一样在外部生物体中吸收Al〜(3+)。最高有机配体结合的来源似乎是酚,如转铁蛋白,羟基吡啶酮,一些铁氧还蛋白和腐殖酸(请注意,这种选择不是“硬” Al〜(3+)与“硬”酸相互作用的选择,但压倒性的Al〜(3+)是一个非常小的离子,与非常小的供体(例如F〜-和RO〜-(酚盐),而不是-CO_2〜-)结合最好。显然,正如对生物中其他金属离子的研究一样,要充分了解Al〜(3+)影响活细胞的方式以及将其安全地螯合在高等生物中的方式,还有许多工作要做。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号