首页> 外文期刊>Coordination chemistry reviews >A theoretical study of zero-field splitting in Fe(IV)S_6 (S =1) and Fe(III)S_6 (S = 1/2) core complexes, [Fe~(Ⅳ)(Et_2dtc)_(3-n)(mnt)_n]~(n-1)- and [Fe~(Ⅲ)(Et_2dtc)_(3-n)(mnt)_n]~(n-) (n = 0, 1,2,3): The origin of the magnetic anisotropy
【24h】

A theoretical study of zero-field splitting in Fe(IV)S_6 (S =1) and Fe(III)S_6 (S = 1/2) core complexes, [Fe~(Ⅳ)(Et_2dtc)_(3-n)(mnt)_n]~(n-1)- and [Fe~(Ⅲ)(Et_2dtc)_(3-n)(mnt)_n]~(n-) (n = 0, 1,2,3): The origin of the magnetic anisotropy

机译:Fe(IV)S_6(S = 1)和Fe(III)S_6(S = 1/2)核配合物[Fe〜(Ⅳ)(Et_2dtc)_(3-n)的零场分裂的理论研究(mnt)_n]〜(n-1)-和[Fe〜(Ⅲ)(Et_2dtc)_(3-n)(mnt)_n]〜(n-)(n = 0,1,2,3):磁各向异性的由来

获取原文
获取原文并翻译 | 示例
       

摘要

Multireference ab initio calculations and ligand field analysis of a series of complexes with Fe(IV)S_6 (S = 1) [Fe~(Ⅳ)(Et_2dtc)_(3-n)(mnt)_n]~((n-1)-) and Fe(Ⅲ)S_6 (S = 1/2) [Fe~(Ⅲ)(Et_2dtc)_(3-n)(mnt)_n]~n- cores ((mnt)~(2-)= maleonitriledithiolate (2-), (Et_2dtc)~(1-) = diethyldithiocarbamato (1 -) ligands, n = 0,1,2,3) are reported and used to understand their magnetic and spectroscopic (ESR) properties. These systems feature large and variable values of D for the S = 1 complexes of Fe(IV) and strongly anisotropic g-tensors for the S = 1/2 complexes of Fe(Ⅲ). The calculations are in good to excellent agreement with experiment. We utilize a historic concept put forward by Orgel as early as 1961 [39] in order to analyze the computational data. The non-additive contributions to ligand field due to the π-conjugated systems of the chelate ligands mnt~(2-) and Et_2dtc~- are responsible for the large magnetic anisotropy. These contributions are even more important than geometric distortions imposed by the rigid ligand cores. The correlations have been demonstrated and quantified using an extended ligand field (LF) model with parameters adjusted to complete active space self-consistent field (CASSCF) calculations corrected for dynamic correlation with the second order N-electron valence perturbation theory (NEVPT2). According to this analysis, the topology of the intrinsic π-electron system of the mnt~(2-) and Et_2dtc~- ligands causes a splitting of the octahedral t_(2g) orbitals of different sign for mnt~(2-) (e > a,, in-phase coupling) and Et_2dtc~(1-) (a_1 >e, out-of-phase coupling). When combined with the π-donor ability of the mnt~(2-) and Et_2dtc~- shown by theory and experiment to be much stronger in mnt~(2-) compared to Et_2dtc~(1-) this leads to large orbital contributions to the magnetic moment and to a negative D for [Fe(mnt)(dtc)_2] with an easy axis of magnetization bisecting the SFeS(mnt) bite angle. Using this ab initio based renewed concept, field dependent isothermal magnetizations reported previously (Milsmann et al., 2010 [25]) have been re-interpreted. We show that theorthorhombic anisotropy for [Fe~(Ⅳ)(Et2 dtc)(mnt)_2]~(1-)(2~(ox))and[Fe~(Ⅳ)(Et_2dtc)_2(mnt)]~0(3~(ox)), that has never been discussed before, leads to large zero-field splitting parameter £. At the same time it is pointed out, that the D and £ spin-Hamiltonian parameters cannot be uniquely extracted from a fit to the magnetic susceptibility data, unless combined with other sophisticated spectroscopic experiments. Applying the same anisotropic π-bonding model, orbital contributions leading to strongly anisotropic g-tensors reported from simulation of ESRdata of the Fe(Ⅲ)S_6 (S = 1/2) cores in complexes [Fe~(Ⅲ)(Et_2dtc)_(3-n)(mnt)_n]~(n-) (n = 0,1,2,3) have been rationalized.
机译:Fe(IV)S_6(S = 1)[Fe〜(Ⅳ)(Et_2dtc)_(3-n)(mnt)_n]〜((n-1)的一系列配合物的多参从头计算和配体场分析)-)和Fe(Ⅲ)S_6(S = 1/2)[Fe〜(Ⅲ)(Et_2dtc)_(3-n)(mnt)_n]〜n-芯((mnt)〜(2-)=报道了顺丁烯二腈-(2-),(Et_2dtc)〜(1-)=​​二乙基二硫代氨基甲酸酯(1-)配体,n = 0、1、2、3),并用于理解其磁性和光谱(ESR)特性。这些系统的特征是Fe(IV)的S = 1配合物具有较大且可变的D值,而Fe(Ⅲ)的S = 1/2配合物具有强各向异性的g张量。计算结果与实验吻合得很好。我们利用Orgel早在1961年提出的历史概念[39]来分析计算数据。螯合配体mnt〜(2-)和Et_2dtc〜-的π共轭体系对配体场的非累加贡献是造成较大的磁各向异性的原因。这些贡献甚至比刚性配体核所造成的几何变形还要重要。已经使用扩展配体场(LF)模型演示并量化了相关性,其参数已调整以完成有源空间自洽场(CASSCF)计算,并通过二阶N电子价态扰动理论(NEVPT2)进行了动态相关性校正。根据该分析,mnt〜(2-)和Et_2dtc〜-配体的本征π电子体系的拓扑结构导致mnt〜(2-)(e)的不同符号的八面体t_(2g)轨道分裂> a,同相耦合)和Et_2dtc〜(1-)(a_1> e,同相耦合)。与理论和实验表明的mnt〜(2-)和Et_2dtc〜-的π供体能力相结合时,与Et_2dtc〜(1-)相比,mnt〜(2-)中的π供体要强得多。 [Fe(mnt)(dtc)_2]的磁矩和负D值,易磁化轴将SFeS(mnt)咬合角平分。使用这个从头开始的新概念,以前报道的与磁场有关的等温磁化强度(Milsmann等,2010 [25])得到了重新解释。我们证明了[Fe〜(Ⅳ)(Et2 dtc)(mnt)_2]〜(1-)(2〜(ox))和[Fe〜(Ⅳ)(Et_2dtc)_2(mnt)]〜0的斜方各向异性(3〜(ox))以前从未讨论过,它导致零场分裂参数£大。同时指出,除非结合其他复杂的光谱实验,否则无法从对磁化率数据的拟合中唯一地提取出D和£自旋哈密顿参数。应用相同的各向异性π键模型,通过模拟Fe(Ⅲ)S_6(S = 1/2)核在配合物中[Fe〜(Ⅲ)(Et_2dtc)_的ESR数据,报道了导致强各向异性g张量的轨道贡献。 (3-n)(mnt)_n]〜(n-)(n = 0,1,2,3)已合理化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号