...
首页> 外文期刊>IEEE Transactions on Control Systems Technology >A High Precision Motion Control System With Application to Microscale Robotic Deposition
【24h】

A High Precision Motion Control System With Application to Microscale Robotic Deposition

机译:高精度运动控制系统及其在微型机器人沉积中的应用

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Decreasing the minimum feature size of solid free-form (SFF) fabrication techniques requires advancements in both the SFF process and the actuating hardware. Microscale robotic deposition ($mu$-RD) is an ink-deposition SFF process where recent advances in ink design coupled with a high-precision motion system can lead to the fabrication of parts with microscale-sized features. This paper presents a control algorithm that combines nonlinearity compensation and a learning feedforward approach to achieve high-precision tracking with a standard, off-the-shelf motion system. The off-the-shelf motion system is affected by several nonlinear disturbances that severely inhibit the accuracy of linear models for small motions. Iterative learning control (ILC) is used in an inverse identification procedure to obtain accurate maps of the disturbances. These maps are used in the controller to yield a linear system after nonlinearity cancellation. As a further improvement, ILC is used to increase accuracy in tracking the repetitive portion of specific part trajectories. The combined approach yields extremely low contour tracking errors and is used to fabricate two types of periodic parts demonstrating high aspect ratios and spanning elements. Although high-precision tracking can also be achieved with an expensive, customized system, the off-the-shelf system combined with the control technique presented here provides a more cost-effective solution. The proposed control technique is effective for improving performance of repeatable, but uncertain nonlinear systems.
机译:减小固态自由形式(SFF)制造技术的最小特征尺寸需要SFF工艺和致动硬件方面的进步。微型机器人沉积(μ-RD)是一种油墨沉积SFF工艺,其中油墨设计的最新进展与高精度运动系统的结合可导致制造出具有微米级特征的零件。本文提出了一种控制算法,该算法将非线性补偿和学习前馈方法相结合,可通过标准的现成运动系统实现高精度跟踪。现有的运动系统受到几种非线性干扰的影响,这些非线性干扰严重限制了小运动线性模型的准确性。逆学习过程中使用了迭代学习控制(ILC),以获得干扰的精确图。这些映射在控制器中用于在消除非线性之后生成线性系统。作为进一步的改进,ILC用于提高跟踪特定零件轨迹的重复部分的准确性。组合的方法产生极低的轮廓跟踪误差,并用于制造两种类型的周期性零件,这些零件显示出高纵横比和跨度元素。尽管也可以使用昂贵的定制系统来实现高精度跟踪,但是现成的系统与此处介绍的控制技术相结合可提供更具成本效益的解决方案。所提出的控制技术对于提高可重复但不确定的非线性系统的性能是有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号