...
首页> 外文期刊>Contributions to Mineralogy and Petrology >Effect of melt composition on basalt and peridotite interaction: laboratory dissolution experiments with applications to mineral compositional variations in mantle xenoliths from the North China Craton
【24h】

Effect of melt composition on basalt and peridotite interaction: laboratory dissolution experiments with applications to mineral compositional variations in mantle xenoliths from the North China Craton

机译:熔体组成对玄武岩和橄榄岩相互作用的影响:实验室溶出实验及其对华北克拉通地幔异岩中矿物成分变化的应用

获取原文
获取原文并翻译 | 示例
           

摘要

Interaction between basaltic melts and peridotites has played an important role in modifying the lithospheric and asthenospheric mantle during magma genesis in a number of tectonic settings. Compositions of basaltic melts vary considerably and may play an important role in controlling the kinetics of melt–peridotite interaction. To better understand the effect of melt composition on melt–peridotite interaction, we conducted spinel lherzolite dissolution experiments at 2 GPa and 1,425 °C using the dissolution couple method. The reacting melts include a basaltic andesite, a ferro-basalt, and an alkali basalt. Dissolution of lherzolite in the basaltic andesite and the ferro-basalt produced harzburgite–lherzolite sequences with a thin orthopyroxenite layer at the melt–harzburgite interface, whereas dissolution of lherzolite in the alkali basalt produced a dunite–harzburgite–lherzolite sequence. Systematic variations in mineral compositions across the lithological units are observed. These mineral compositional variations are attributed to grain-scale processes that involve dissolution, precipitation, and reprecipitation and depend strongly on reacting melt composition. Comparison of mineral compositional variations across the dissolution couples with those observed in mantle xenoliths from the North China Craton (NCC) helps to assess the spatial and temporal variations in the extent of siliceous melt and peridotite interaction in modifying the lithospheric mantle beneath the NCC. We found that such melt–rock interaction mainly took place in Early Cretaceous, and is responsible for the enrichment of pyroxene in the lithospheric mantle. Spatially, siliceous melt–peridotite interaction took place in the ancient orogens with thickened lower crust.
机译:在许多构造环境中,玄武质熔体与橄榄岩之间的相互作用在改变岩浆形成过程中的岩石圈和软流圈地幔中起着重要作用。玄武质熔体的成分差异很大,并可能在控制熔体与橄榄岩的相互作用动力学中起重要作用。为了更好地理解熔体成分对熔体与橄榄岩的相互作用,我们使用溶出偶数法在2GPa和1,425°C下进行了尖晶石锂沸石溶解实验。反应的熔体包括玄武安山岩,铁玄武岩和碱性玄武岩。钙铁矿在玄武岩安山岩和玄武岩中的溶解产生了在熔体-哈氏铁矿界面上具有薄的正辉辉石层的harzburgite-lherzolite序列,而锂铁矿在碱性玄武岩中的溶解产生了dunite-harzburgite-lherzolite序列。观察到整个岩性单元中矿物成分的系统变化。这些矿物成分的变化归因于晶粒度过程,该过程涉及溶解,沉淀和再沉淀,并且在很大程度上取决于反应的熔体组成。比较华北克拉通(NCC)地幔异岩中溶蚀对的矿物组成变化,有助于评估硅质熔体和橄榄岩相互作用程度的时空变化,从而改变了NCC下方的岩石圈地幔。我们发现这种熔岩相互作用主要发生在白垩纪早期,并且是岩石圈地幔中辉石富集的原因。在空间上,硅质熔体与橄榄岩的相互作用发生在古老的造山带,下地壳增厚。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号