首页> 外文期刊>Construction and Building Materials >Concrete wedge and coarse sand coating shear connection system in GFRP concrete composite deck
【24h】

Concrete wedge and coarse sand coating shear connection system in GFRP concrete composite deck

机译:GFRP混凝土复合板混凝土楔形与粗砂涂层剪力连接系统

获取原文
获取原文并翻译 | 示例
       

摘要

In recent years, Glass Fiber-Reinforced Polymer (GFRP) has become a widely used material in Fiber-Reinforced Polymer (FRP) composite structures. Several studies have been performed on the bonding methods of FRP sheets and plates, but limited research has been undertaken on the critical shear connection systems for innovative GFRP concrete composite bridge decks structures. Coarse sand coating shear connection systems for GFRP structures show strong bondage in the shear direction but poor grip in the normal direction. An innovative concrete wedge system, supplementary to coarse sand coating overcomes the normal split between GFRP panel and concrete, in composite bridge deck structures. This study presents a finite element (FE) investigation on GFRP concrete composite deck using a concrete wedge shear connection system based on existing experimental evaluation. In this research, the thickness of the GFRP module was varied and the deflection behaviour of GFRP concrete composite deck was furthermore studied. FE results indicate that thickness increments of the GFRP module significantly reduce the mid-span deflection of the composite deck and subsequently increase the ultimate load. In order to investigate the interaction behaviour between GFRP and concrete in the numerical analysis, a structural interface element is proposed for finite element modelling (FEM) analysis. In order to undertake a rapid evaluation of deflection of the composite deck, an equation is proposed to estimate the deflection at the mid-span of the GFRP composite bridge deck based on the FEM results. In addition, the GFRP composite bridge deck was numerically analysed using light-weight concrete (LWC) and results were compared with GFRP composite deck with conventional concrete. The results indicate that using LWC increases the ultimate load proportionally till failure. (C) 2016 Elsevier Ltd. All rights reserved.
机译:近年来,玻璃纤维增​​强聚合物(GFRP)已成为纤维增强聚合物(FRP)复合结构中广泛使用的材料。已经对FRP板和板的粘结方法进行了一些研究,但是对于创新的GFRP混凝土复合桥面板结构的临界剪切连接系统的研究却很少。 GFRP结构的粗砂涂层剪切连接系统在剪切方向上显示出很强的粘结性,但在法线方向上显示出较差的抓地力。创新的混凝土楔形系统补充了粗砂,克服了复合桥面板结构中GFRP板和混凝土之间的正常分隔。这项研究基于现有的实验评估结果,对使用混凝土楔剪连接系统的GFRP混凝土复合板进行了有限元研究。在这项研究中,改变了GFRP组件的厚度,并进一步研究了GFRP混凝土复合板的挠度行为。有限元结果表明,GFRP模块的厚度增加显着降低了复合材料甲板的中跨挠度,从而增加了极限载荷。为了在数值分析中研究GFRP与混凝土之间的相互作用行为,提出了一种结构界面元用于有限元建模(FEM)分析。为了快速评估复合材料桥面的挠度,提出了一个方程,根据有限元分析结果估算了GFRP复合材料桥面中跨的挠度。此外,使用轻质混凝土(LWC)对GFRP复合桥面板进行了数值分析,并将结果与​​采用常规混凝土的GFRP复合桥面板进行了比较。结果表明,使用LWC会按比例增加极限载荷,直至失效。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号