...
首页> 外文期刊>Construction and Building Materials >On the delamination of polyvinyl butyral laminated glass: Identification of fracture properties from numerical modelling
【24h】

On the delamination of polyvinyl butyral laminated glass: Identification of fracture properties from numerical modelling

机译:在聚乙烯丁醛夹层玻璃的分层:数值模拟中裂缝性能的鉴定

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

This work investigates the delamination behaviour of polyvinyl butyral (PVB) laminated glass under quasi-static loading based on a cohesive zone model (CZM) with an isotropic bilinear traction - separation (T - delta) law. It presents a 2D model of a through-cracked tensile (TCT) test within an implicit finite element framework of the commercial software ANSYS. Test results from literature are used to calibrate the adhesion properties of the PVB-glass interface in a numerical cohesive zone approach. The previous TCT tests were performed at a loading rate of 6 mm/min and a temperature of approx. 22 degrees C. Three different PVB adhesion grades, i.e., BG R10 (low), BG R15 (medium) and BG R20 (high) are considered. Given the uncertainty in the identification of adhesion parameters, including interfacial fracture energy, cohesive strength and stiffness, a parametric analysis is conducted quantifying the influences of model parameters on the simulation results. The study allows for decoupling of individual parameters in the calibration. Then, interfacial fracture energies and cohesive strengths of the PVB-laminated glass are calibrated by matching the force - displacement curves of the numerical simulations with those from the TCT experiments. One representative case was chosen for each adhesion grade. We obtain interfacial fracture energies of 425 J/m(2), 650 J/m(2) and 1000 J/m(2) for BG R10, BG R15 and BG R20 PVBs, respectively, while the corresponding cohesive strengths are 3 MPa, 5 MPa and 10 MPa, respectively. Moreover, based on numerical simulation results, the conversion of energy during the delamination process is extracted and discussed. The mixed-mode delamination mechanism is investigated by calculating the mode I and mode II energy release rates with respect to different PVB thicknesses and adhesion. The results show that the proportion of the mode I energy release rate is around 30%similar to 40% of the total energy release rate at the stable delamination stage and increases with PVB thickness. The presented study contributes to the adhesion properties of various types of PVB interlayers reported in open literatures and proposes a methodology for the unique identification of adhesion properties.
机译:这项工作调查聚乙烯醇缩丁醛(PVB)的剥离行为下基于一个内聚力模型(CZM)与各向同性双线性牵引准静态加载层压玻璃 - 分离(T - 增量)法。它提出了一个通过裂解拉伸(TCT)测试的商业软件ANSYS的隐式有限元框架内的2D模型。从文献测试结果用于校准的数值内聚带的方法的PVB - 玻璃界面的粘附性能。先前TCT试验在6毫米/分钟的加载速率和大约的温度下进行。 22℃下的三种不同PVB粘合性等级,即,BG R10(低),BG R15(培养基)和BG R20(高)被考虑。鉴于粘附参数,包括界面断裂能,内聚强度和刚度的识别的不确定性,参数分析中进行量化的模拟结果的模型参数的影响。该研究允许在校准各个参数的解耦。数值模拟的位移曲线与来自TCT实验 - 然后,界面断裂能和PVB层压玻璃的粘结强度由该力匹配校准。一个代表性情况下被选择为每个粘附等级。我们得到的425焦耳/米(2),650焦耳/米(2)和1000焦耳/米(2),用于分别BG R10,BG R15和BG R20 PVBS,界面断裂能,而相应的内聚强度是3兆帕,5兆帕和10兆帕,分别。此外,基于数值模拟结果,能量在分层过程的转化被提取和讨论。混合模式脱层机制是通过计算模式I和模式II能量释放率相对于不同厚度的PVB和粘附的影响。结果表明,在模式I能量释放率的比例为30%左右类似于在稳定阶段剥离,并增加与PVB厚度的总能量释放率的40%。所提出的研究有助于各类PVB夹层的粘合性能报告在公开的文献,并提出了粘接性能的唯一识别的方法。

著录项

  • 来源
    《Construction and Building Materials》 |2021年第1期|124827.1-124827.13|共13页
  • 作者单位

    Tongji Univ Coll Civil Engn Shanghai Peoples R China|Tech Univ Darmstadt Dept Civil & Environm Engn Inst Struct Mech & Design Darmstadt Germany;

    Tech Univ Darmstadt Dept Civil & Environm Engn Inst Struct Mech & Design Darmstadt Germany;

    Tongji Univ State Key Lab Disaster Reduct Civil Engn Shanghai Peoples R China;

    Tech Univ Darmstadt Dept Civil & Environm Engn Inst Struct Mech & Design Darmstadt Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    PVB-laminated glass; Delamination; TCT test; Cohesive zone model; Mixed-mode failure;

    机译:PVB层压玻璃;分层;TCT试验;凝聚区模型;混合模式故障;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号