首页> 外文期刊>Construction and Building Materials >Dynamic mechanical properties and fracturing behaviour of concrete under biaxial compression
【24h】

Dynamic mechanical properties and fracturing behaviour of concrete under biaxial compression

机译:双轴压缩下混凝土的动态力学性能和压裂行为

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Heterogeneity is an important factor affecting the dynamic mechanical properties and failure process of geomaterials especially when considering the coupled effect of strain rates and confinements. In this research, dynamic biaxial compression tests are conducted on concrete by using a triaxial Hopkinson bar system with different biaxial confinements (i.e., pre-stress sigma(1) and sigma(2): 5-30 MPa) and impact velocities (i.e., 14-18 m/s corresponding to strain rates of 80-140 s(-1)). High-speed three-dimensional digital image correlation (3D-DIC), synchrotron-based micro-computed-tomography (micro-CT) and a machine learning-based crack classification technique are adopted to quantify the dynamic deformation and fracturing properties. Experimental results show that both dynamic strength and peak strain decrease with increasing axial pre-stress sigma(1), but increase with higher lateral pre-stress sigma(2) and impact velocity. Fractures generally propagate from the surfaces of the specimen towards the centre along the impact direction, and appear at interfaces and in the matrix first and aggregates afterwards. Real-time surface deformation and post-failure fractures are aggravated with pre-stress sigma(1) and impact velocity, but restrained by pre-stress sigma(2). Statistical crack analysis indicates that different crack types (e.g., matrix crack, interfacial crack and transgranular crack) own distinct geometrical characteristics (e.g., orientation ratio of aggregate. Moreover, transgranular crack ratio decreases with higher pre-stress sigma(1), but increases with larger pre-stress sigma(2) and impact velocity, consistent with variation of total stress and fracture energy, implying the significance of transgranular crack on mechanical properties and fracture energy of heterogeneous geomaterials under dynamic loadings. (C) 2021 Elsevier Ltd. All rights reserved.
机译:异质性是影响地质材料的动态机械性能和故障过程的重要因素,特别是在考虑应变率和限制的耦合效应时。在该研究中,通过使用具有不同双轴限制的三轴霍普金森棒系统(即,应激σ(1)和Sigma(2):5-30MPa)和冲击速度(即,对应于80-140秒(-1)的应变率的14-18毫米/秒。采用高速三维数字图像相关(3D-DIC),同步基于同步的微计算断层扫描(MICRO-CT)和基于机器学习的裂缝分类技术来量化动态变形和压裂性能。实验结果表明,随着轴向预应力Σ(1)的增加,动态强度和峰值应变减小,但随着横向预应力σ(2)和冲击速度,增加。裂缝通常从标本的表面朝向中心沿着碰撞方向传播,并且在界面和基质中出现在矩阵中并之后聚集。使用预应力Σ(1)和冲击速度加剧实时表面变形和失败后骨折,但受到预应力σ(2)的限制。统计裂纹分析表明,不同的裂缝类型(例如,矩阵裂纹,界面裂缝和响囊裂纹)自身的几何特征(例如,聚集体的取向比。此外,响应裂缝比具有更高的压力Sigma(1),但增加具有较大的预应力Σ(2)和冲击速度,与总应力和裂缝能量的变化一致,暗示了响晶裂缝在动态载荷下的异构地质材料的机械性能和断裂能量的重要性。(c)2021 elestvier有限公司权利保留。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号