...
首页> 外文期刊>Construction and Building Materials >Drying shrinkage crack simulation and meso-scale model of concrete repair systems
【24h】

Drying shrinkage crack simulation and meso-scale model of concrete repair systems

机译:混凝土修复系统干燥收缩裂纹探测与中学规模模型

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Repairing materials and interfacial bonding quality are the two crucial factors that affect the shrinkage performance of concrete repair systems. The objective of this paper is to provide a fine meso-scale modelling method of concrete repair systems and to get a better understanding of shrinkage cracks propagation mechanism due to the influence of overlay materials, interface roughness and bonding strength. Through the laser scanning test and different algorithms, e.g. random cutting and random midpoint interpolation algorithm, geometry models of the 2D actual aggregate and rough interfaces with different fractal dimensions were generated. Besides, zero-thickness cohesive elements were inserted in mesh as the reserved path for cracks by modifying the inp file of ABAQUS. The validity of the model was verified by comparing with LI's experiment. Results of the simulation suggested that the final length of surface cracks and interface debonding depended on the overall shrinkage of the repair system and surface cracks mainly occurred in high bonding strength cases; aggregate nearby the interface caused the initial damage at low bonding strength interface, leading to the "stepped" debonding with time; The rough interface was more difficult to debond because it required more fracture energy and local shear stress was converted into compressive stress to prevent the development of debonding. (C) 2020 Elsevier Ltd. All rights reserved.
机译:修复材料和界面粘合质量是影响混凝土修复系统收缩性能的两个关键因素。本文的目的是提供一种混凝土修复系统的精细设计级型建模方法,并由于覆盖材料的影响,界面粗糙度和粘接强度而更好地了解收缩裂缝传播机制。通过激光扫描测试和不同的算法,例如,随机切割和随机中点插值算法,产生了具有不同分形尺寸的2D实际聚集和粗糙接口的几何模型。此外,通过修改ABAQU的INP文件,将零厚度粘性元件插入网状物中作为裂缝的保留路径。通过与李实验相比,验证了模型的有效性。仿真结果表明,表面裂缝和界面剥离的最终长度取决于修复系统的总收缩和表面裂缝主要发生在高粘接强度箱中;附近界面的聚合导致低粘接强度界面造成的初始损坏,导致“阶梯式”借助时间;粗糙界面更难以验证,因为它需要更裂缝能量,局部剪切应力被转化为压缩应力,以防止剥离的发展。 (c)2020 elestvier有限公司保留所有权利。

著录项

  • 来源
    《Construction and Building Materials》 |2020年第30期|118566.1-118566.13|共13页
  • 作者单位

    Tongji Univ Coll Transportat Engn Minist Educ Key Lab Rd & Traff Engn Shanghai 201804 Peoples R China|Shanghai Key Lab Rail Infrastruct Durabil & Syst Shanghai 201804 Peoples R China;

    Tongji Univ Coll Transportat Engn Minist Educ Key Lab Rd & Traff Engn Shanghai 201804 Peoples R China|Shanghai Key Lab Rail Infrastruct Durabil & Syst Shanghai 201804 Peoples R China;

    Tongji Univ Coll Transportat Engn Minist Educ Key Lab Rd & Traff Engn Shanghai 201804 Peoples R China|Shanghai Key Lab Rail Infrastruct Durabil & Syst Shanghai 201804 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Concrete repair systems; Meso-scale; Cohesive element; Bonding strength; Rough interface;

    机译:具体修复系统;中间规模;粘性元素;粘接强度;粗糙的界面;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号