...
首页> 外文期刊>Construction and Building Materials >Lattice Discrete Particle Modeling of concrete coupled creep and shrinkage behavior: A comprehensive calibration and validation study
【24h】

Lattice Discrete Particle Modeling of concrete coupled creep and shrinkage behavior: A comprehensive calibration and validation study

机译:混凝土蠕变和收缩行为的晶格离散粒子建模:全面的标定和验证研究

获取原文
获取原文并翻译 | 示例

摘要

Concrete aging and deterioration are the result of a complex combination of multiple interacting time dependent phenomena. Two major ones are shrinkage and creep, which affect and in turn are affected by both environmental conditions and any additional damage mechanisms like Alkali-Silica Reaction (ASR), corrosion, freeze/thaw and others. While many modeling approaches can represent the overall uncoupled contribution of these phenomena, they can not capture their coupled effects especially when large internal self-equilibrated stresses are produced like in the case of ASR free expansions. Macroscopic continuum models can not capture the induced meso-scale creep deformation and stress relaxation due to these conditions. Recently, the Lattice Discrete Particle Model (LDPM) was extended to account for coupled creep, shrinkage and ASR deformations and has shown noticeable success in capturing these meso-scale phenomena. The model uses a multi-physics formulation to evolve temperature, humidity, cement hydration, and alkali ion diffusion in both space and time at the meso-scale between large aggregate pieces. Creep and shrinkage deformations are formulated based on a discrete version of the Micro prestress Solidification theory. It was shown that using this detailed multi-scale multi-physics framework is essential for the accurate prediction of both plain and reinforced concrete long-term behavior. The major challenge associated with using this comprehensive formulation is the appropriate calibration of its multiple parameters. This requires multiple experiments to be performed on the same material, which is usually not the case in many experimental campaigns. Till today, no established recommendation existed concerning the optimal calibration sequence dependent on the available data. This paper, presents a detailed procedure for the calibration of the hygro-thermo-chemical and creep/shrinkage parameters in an uncoupled manner. The procedure is thoroughly investigated using 9 different experimental datasets that vary in complexity and level of detail. Results show the effectiveness of the procedure and the capabilities of the modeling framework. (C) 2019 Elsevier Ltd. All rights reserved.
机译:混凝土老化和劣化是多种相互作用的时间相关现象的复杂组合的结果。收缩和蠕变是两个主要因素,收缩和蠕变既会影响环境条件,又会受到其他影响机制的影响,例如碱-二氧化硅反应(ASR),腐蚀,冻结/融化等。尽管许多建模方法可以代表这些现象的整体未耦合贡献,但它们无法捕获其耦合效应,尤其是当产生大量内部自平衡应力时(如无ASR膨胀的情况)。宏观连续模型不能捕获由于这些条件引起的介观蠕变和应力松弛。最近,对晶格离散粒子模型(LDPM)进行了扩展以解决耦合蠕变,收缩和ASR变形问题,并且在捕获这些中尺度现象方面显示出了显着的成功。该模型使用多物理场公式在大型集料块之间的细观尺度上在时空上演化温度,湿度,水泥水化和碱金属离子扩散。蠕变和收缩变形是根据微预应力凝固理论的离散形式制定的。结果表明,使用这种详细的多尺度多物理场框架对于准确预测钢筋混凝土和钢筋混凝土的长期性能至关重要。与使用这种全面配方相关的主要挑战是对其多个参数的适当校准。这要求在同一材料上执行多个实验,而在许多实验活动中通常并非如此。直到今天,关于取决于可用数据的最佳校准顺序的建议还不存在。本文提出了一种以非耦合方式校准湿热化学和蠕变/收缩参数的详细程序。使用9个不同的实验数据集对该程序进行了彻底的研究,这些数据集的复杂性和详细程度有所不同。结果显示了该过程的有效性和建模框架的功能。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号