首页> 外文期刊>Computers & mathematics with applications >Entropy generation analysis of different nanofluid flows in the space between two concentric horizontal pipes in the presence of magnetic field: Single-phase and two-phase approaches
【24h】

Entropy generation analysis of different nanofluid flows in the space between two concentric horizontal pipes in the presence of magnetic field: Single-phase and two-phase approaches

机译:磁场作用下两个同心水平管之间空间中不同纳米流体流动的熵产生分析:单相和两相方法

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, entropy generation analysis of different nanofluid flows in the space between two concentric horizontal pipes in the presence of magnetic field by using of single-phase and two-phase approaches was carried out. Single-phase model and two-phase model (mixture) are utilized to model the flow and heat transfer for Newtonian nanofluids in the space between two concentric horizontal tubes subjected to the magnetic field. The Reynolds and Hartman numbers ranges are 500 = Re = 1500 and 0 = Ha = 20, respectively. In this study, heat transfer of various nanofluids (Al2O3, TiO2, ZnO and SiO2) and their entropy generation have been investigated. The effect of diameter of particles (water-Al2O3 nanofluid) on heat transfer and entropy generation has also been studied. Average Nusselt number in terms of Hartman number and Reynolds number for different nanofluids for single-phase and two-phase models in various volume fractions, entropy generation due to friction, magnet and heat transfer in terms of radial direction for different Hartman numbers, Reynolds number and different nanofluids with different diameter of particles were obtained. We found that in all states, the Nusselt number is higher in twophase model than in single-phase model. The maximum pressure difference for single- and two-phase models occurs at maximum volume fractions and Hartman number. Also, as the diameter of the nanoparticle increases, the result will be an increase in the temperature of the walls, leading to an increase in entropy generation. Also, as the Hartman number increases, the amount of entropy generation increases. (C) 2018 Elsevier Ltd. All rights reserved.
机译:本文利用单相和两相方法对存在磁场的两个同心水平管之间的空间中不同的纳米流体流动进行了熵产生分析。利用单相模型和两相模型(混合物)来模拟牛顿纳米流体在磁场作用下的两个同心水平管之间的空间中的流动和传热。雷诺数和哈特曼数范围分别为500 <= Re <= 1500和0 <= Ha <= 20。在这项研究中,研究了各种纳米流体(Al2O3,TiO2,ZnO和SiO2)的传热及其熵的产生。还研究了颗粒直径(水-Al2O3纳米流体)对传热和熵产生的影响。对于不同体积分数的单相和两相模型,不同纳米流体的平均努塞尔数(以Hartman数和雷诺数表示),不同Hartman数的径向方向上的摩擦产生的熵,磁体和传热产生的熵,雷诺数得到了不同粒径的纳米流体。我们发现在所有状态下,两相模型中的Nusselt数均高于单相模型。单相和两相模型的最大压差出现在最大体积分数和哈特曼数下。而且,随着纳米颗粒直径的增加,结果将是壁的温度升高,从而导致熵产生的增加。另外,随着哈特曼数的增加,熵的产生量也增加。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号