首页> 外文期刊>Computers & geosciences >Three-dimensional direct current resistivity forward modeling based on the hp-adaptive finite element method
【24h】

Three-dimensional direct current resistivity forward modeling based on the hp-adaptive finite element method

机译:基于HP自适应有限元方法的三维直流电阻率前进建模

获取原文
获取原文并翻译 | 示例
           

摘要

In recent years, the adaptive finite element method has been used for direct current resistivity forward modeling to improve the accuracy of numerical solutions. The accuracy of adaptive finite element solutions is mainly affected by two factors: the cell size (h) and the order of the shape function (p). To further improve the accuracy of the adaptive finite element solutions and keep low computational costs, we present a hp-adaptive finite element algorithm, combining h-adaptive and p-adaptive, for three-dimensional direct current forward modeling. The adaptive mesh refinement is guided by a posteriori error estimator and a smoothness estimator of the solution. In the adaptive process, for a cell with a large error, if the smoothness of the solution is low, the cell will be refined; otherwise, the order of the shape function on the cell will be increased by one order. To obtain high-precision finite element solutions for complex models with topographies the unstructured grids are adopted. The octree-based mesh refinement method is used to refine the cells, and the shape functions with arbitrary orders in three-dimensional space are generated by using tensor products of one-dimensional polynomials. A two-layer model is used to verify the correctness of the algorithm. The comparison between the convergence rate of global, h-adaptive, and hp-adaptive refinement algorithms indicates that our algorithm can provide the most accurate solution with the lowest computation costs. It shows exponentially convergence rate. Finally, a topography model with an abnormal body and a complex abnormal model are used to verify the robustness of our algorithm.
机译:近年来,自适应有限元方法已被用于直流电阻率前进建模,以提高数值解决方案的准确性。自适应有限元解决方案的准确性主要受两个因素的影响:细胞尺寸(H)和形状函数的顺序(P)。为了进一步提高自适应有限元解决方案的准确性并保持低计算成本,我们介绍了一种HP自适应有限元算法,组合H-Adaptive和P自适应,用于三维直流前进建模。自适应网格细化由后验误差估计器和解决方案的平滑度估计。在自适应过程中,对于具有大误差的细胞,如果溶液的平滑度低,则细胞将被精制;否则,单元上的形状函数的顺序将增加一个订单。为了获得具有拓扑结构的复杂模型的高精度有限元解决方案,采用非结构化网格。基于Octree的网格细化方法用于优化细胞,并且通过使用一维多项式的张量产物来产生三维空间中任意订单的形状函数。双层模型用于验证算法的正确性。全局,H-Adaptive和HP-Adaptive Refinement算法的收敛速率之间的比较表明,我们的算法可以提供最低计算成本的最准确的解决方案。它显示了指数增长率。最后,使用具有异常的身体和复杂异常模型的地形模型来验证我们算法的鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号