...
首页> 外文期刊>Computers & geosciences >Project APhiD: A Lorenz-gauged A-Φ decomposition for parallelized computation of ultra-broadband electromagnetic induction in a fully heterogeneous Earth
【24h】

Project APhiD: A Lorenz-gauged A-Φ decomposition for parallelized computation of ultra-broadband electromagnetic induction in a fully heterogeneous Earth

机译:APhiD项目:洛伦兹量表的A-Φ分解,用于在完全异质地球中并行计算超宽带电磁感应

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

An essential element for computational hypothesis testing, data inversion and experiment design for electromagnetic geophysics is a robust forward solver, capable of easily and quickly evaluating the electromagnetic response of arbitrary geologic structure. The usefulness of such a solver hinges on the balance among competing desires like ease of use, speed of forward calculation, scalability to large problems or compute clusters, parsimonious use of memory access, accuracy and by necessity, the ability to faithfully accommodate a broad range of geologic scenarios over extremes in length scale and frequency content. This is indeed a tall order. The present study addresses recent progress toward the development of a forward solver with these properties. Based on the Lorenz-gauged Helmholtz decomposition, a new finite volume solution over Cartesian model domains endowed with complex-valued electrical properties is shown to be stable over the frequency range 10~(-2)-10~(10) Hz and range 10~(-3)-10~5 m in length scale. Benchmark examples are drawn from magnetotellurics, exploration geophysics, geotechnical mapping and laboratory-scale analysis, showing excellent agreement with reference analytic solutions. Computational efficiency is achieved through use of a matrix-free implementation of the quasi-minimum-residual (QMR) iterative solver, which eliminates explicit storage of finite volume matrix elements in favor of "on the fly" computation as needed by the iterative Krylov sequence. Further efficiency is achieved through sparse coupling matrices between the vector and scalar potentials whose non-zero elements arise only in those parts of the model domain where the conductivity gradient is non-zero. Multi-thread parallelization in the QMR solver through OpenMP pragmas is used to reduce the computational cost of its most expensive step: the single matrix-vector product at each iteration. High-level MPI communicators farm independent processes to available compute nodes for simultaneous computation of multi-frequency or multi-transmitter responses.
机译:强大的前向求解器是进行电磁地球物理学的计算假设测试,数据反演和实验设计的基本要素,能够轻松快速地评估任意地质结构的电磁响应。这种求解器的实用性取决于相互竞争的需求之间的平衡,例如易用性,前向计算速度,对大问题或计算集群的可伸缩性,对内存访问的简约使用,准确性以及根据需要忠实地适应广泛范围的能力。长度范围和频率含量的极端情况下的地质情况。这确实是一个艰巨的任务。本研究解决了具有这些特性的正向求解器的开发方面的最新进展。基于洛伦兹(Lorenz)测量的亥姆霍兹(Helmholtz)分解,在具有笛卡尔模型域的,具有复数值电特性的新的有限体积解中,在10〜(-2)-10〜(10)Hz的频率范围和10的范围内稳定长度刻度为〜(-3)-10〜5 m。基准示例来自大地电磁学,勘探地球物理学,岩土工程制图和实验室规模分析,与参考分析解决方案显示出极好的一致性。通过使用准最小残留量(QMR)迭代求解器的无矩阵实现方式来实现计算效率,该迭代求解器消除了有限体积矩阵元素的显式存储,从而有利于迭代Krylov序列所需的“实时”计算。通过矢量和标量势之间的稀疏耦合矩阵(其非零元素仅出现在电导率梯度为非零的模型域的那些部分中),可以进一步提高效率。通过OpenMP编译指令在QMR求解器中进行多线程并行化可减少其最昂贵步骤的计算成本:每次迭代时使用单个矩阵向量乘积。高级MPI通信器将独立的进程分配给可用的计算节点,以便同时计算多频或多发射机响应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号