首页> 外文期刊>Computers & geosciences >Performance prediction of finite-difference solvers for different computer architectures
【24h】

Performance prediction of finite-difference solvers for different computer architectures

机译:不同计算机体系结构的有限差分求解器的性能预测

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The life-cycle of a partial differential equation (PDE) solver is often characterized by three development phases: the development of a stable numerical discretization; development of a correct (verified) implementation; and the optimization of the implementation for different computer architectures. Often it is only after significant time and effort has been invested that the performance bottlenecks of a PDE solver are fully understood, and the precise details varies between different computer architectures. One way to mitigate this issue is to establish a reliable performance model that allows a numerical analyst to make reliable predictions of how well a numerical method would perform on a given computer architecture, before embarking upon potentially long and expensive implementation and optimization phases. The availability of a reliable performance model also saves developer effort as it both informs the developer on what kind of optimisations are beneficial, and when the maximum expected performance has been reached and optimisation work should stop. We show how discretization of a wave-equation can be theoretically studied to understand the performance limitations of the method on modern computer architectures. We focus on the roofline model, now broadly used in the high-performance computing community, which considers the achievable performance in terms of the peak memory bandwidth and peak floating point performance of a computer with respect to algorithmic choices. A first principles analysis of operational intensity for key time-stepping finite-difference algorithms is presented. With this information available at the time of algorithm design, the expected performance on target computer systems can be used as a driver for algorithm design.
机译:偏微分方程(PDE)求解器的生命周期通常由三个发展阶段来表征:稳定的数值离散化的发展;开发正确的(已验证的)实施方案;以及针对不同计算机体系结构的实现的优化。通常,只有在投入大量时间和精力之后,才能完全理解PDE求解器的性能瓶颈,并且在不同的计算机体系结构之间,精确的细节也会有所不同。缓解此问题的一种方法是建立一个可靠的性能模型,该模型允许数值分析人员在着手进行可能漫长且昂贵的实现和优化阶段之前,对数值方法在给定的计算机体系结构上的性能做出可靠的预测。可靠的性能模型的可用性还节省了开发人员的精力,因为它既告知开发人员哪种优化是有益的,又告知何时达到了最大预期性能,并且应该停止优化工作。我们展示了如何从理论上研究离散波方程,以了解该方法在现代计算机体系结构上的性能局限性。我们关注的是目前在高性能计算社区中广泛使用的Roofline模型,该模型考虑了算法选择方面计算机可实现的峰值内存带宽和峰值浮点性能。提出了关键时步有限差分算法的运算强度的第一原理分析。有了在算法设计时可用的信息,目标计算机系统上的预期性能就可以用作算法设计的驱动程序。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号