首页> 外文期刊>Computers & Chemical Engineering >Process integration and superstructure optimization of Organic Rankine Cycles (ORCs) with heat exchanger network synthesis
【24h】

Process integration and superstructure optimization of Organic Rankine Cycles (ORCs) with heat exchanger network synthesis

机译:热交换器网络综合对有机朗肯循环(ORC)进行工艺集成和上层结构优化

获取原文
获取原文并翻译 | 示例
           

摘要

Low and medium temperature energy utilization is one way to alleviate the energy crisis and environmental pollution problems. In the past decades, Organic Rankine Cycles (ORCs) have become a very promising technology for low and medium temperature energy utilization. When an ORC is used to recover waste heat in chemical plants, heat integration between the ORC and the process streams should be performed to save more utilities and generate more power. This study aims to integrate an ORC into a background process to generate maximum electricity without increasing the hot utility usage. We propose a two-step method to integrate an ORC to a background process, optimally considering the modifications of the ORC to increase the thermal efficiency and heat recovered by the working fluid simultaneously. The first step is to determine the configuration (turbine bleeding, regeneration, superheating) and operating conditions (working fluid flowrate, evaporation and condensation temperatures, turbine bleed ratio, degree of superheat, bleeding pressure). The second step is to synthesize the heat exchanger network by minimizing the number of heat exchangers that keep the hot utility unchanged. A well-studied example from the literature is solved to demonstrate the effectiveness of the proposed model for industrial waste heat recovery. The net power output in this paper is improved by 13% compared with the best known previous literature design for this system. The proposed method is also useful for quickly screening working fluids while considering integration potential. Screening of several working fluids revealed that using R601 (n-pentane) in place of the original working fluid (n-hexane) can increase the power output of the example system by an additional 14%.
机译:中低温能源利用是缓解能源危机和环境污染问题的一种方法。在过去的几十年中,有机朗肯循环(ORC)已成为用于中低温能源利用的非常有前途的技术。当使用ORC回收化工厂中的废热时,应在ORC和工艺流之间进行热集成,以节省更多的公用事业并产生更多的电力。这项研究旨在将ORC集成到后台过程中,以在不增加热电厂使用量的情况下产生最大电量。我们提出了一种将ORC集成到后台过程的两步方法,最佳地考虑了对ORC的修改以同时提高热效率和工作流体回收的热量。第一步是确定配置(涡轮机排气,再生,过热)和运行条件(工作流体流量,蒸发和冷凝温度,涡轮机排气比,过热度,排气压力)。第二步是通过最小化使热设施保持不变的热交换器数量来合成热交换器网络。解决了文献中经过充分研究的示例,以证明所提出的模型对工业废热回收的有效性。与该系统最知名的先前文献设计相比,本文的净功率输出提高了13%。提出的方法对于考虑集成潜力的快速筛选工作流体也很有用。对几种工作流体的筛选表明,使用R601(正戊烷)代替原始工作流体(正己烷)可以使示例系统的功率输出额外增加14%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号