首页> 外文期刊>Computers & Chemical Engineering >POD-DEIM model order reduction technique for model predictive control in continuous chemical processing
【24h】

POD-DEIM model order reduction technique for model predictive control in continuous chemical processing

机译:用于连续化学加工中模型预测控制的POD-DEIM模型降阶技术

获取原文
获取原文并翻译 | 示例
           

摘要

In this study, a model order reduction (MOR) technique is proposed to address the challenges of controlling large-scale problems for model predictive control (MPC) development in continuous chemical processing to meet the real-time control requirements. In particular, the proper orthogonal decomposition (POD) technique is employed to project the original large-scale full chemical process model onto a small system of a reduced model space, while the discrete empirical interpolation method is used to evaluate the nonlinear functions at a small set of the interpolation points. By using MOR, the original full chemical process model has been further represented by a much smaller number of state variables (about 2 to 3 orders of magnitude smaller in dimension). Thus, instead of solving the original full model, the MOR method solves the reduced sub-set model iteratively in the control process. In such a way, the MOR solution enables a much faster computational time and opens opportunities for various real-time control applications. In addition, an optimal snapshot selection algorithm is implemented to obtain the global basis vectors, which cover enough information of the model parameter(s) and input(s) in large control window(s) for an accurate MOR construction. For control demonstration, the in-silico control scenarios are performed for both applications (which are multiple scale chemical reactions and multiple pathway reactions), while onsite control is only performed for multiple pathway chemical reactions. Particularly, for soft-launch control demonstrations, the implemented framework is applied for multiple input (MI)/ multiple output (MO) and with the input disturbance and output noise control scenarios, while the on-site control demonstration is applied for SI/SO with input disturbance and MI/SO control scenarios. The obtained results show that the use of the developed MOR-MPC approach can significantly reduce the computational time of about two-orders of magnitude with the relative error of 1.0 × 10~(-3) compared to original full model. It implies that the MOR can be applied to the real-time control of certain applications, where it is impossible for the full original model.
机译:在这项研究中,提出了一种模型降阶(MOR)技术,以解决在连续化学处理中满足模型预测控制(MPC)开发的大规模问题以满足实时控制要求的挑战。特别是,采用适当的正交分解(POD)技术将原始的大规模全化学过程模型投影到缩减模型空间的小型系统上,而离散经验插值方法用于在较小的情况下评估非线性函数一组插值点。通过使用MOR,原始的完整化学过程模型进一步由数量少得多的状态变量表示(尺寸小了约2-3个数量级)。因此,代替求解原始的完整模型,MOR方法在控制过程中迭代地求解了简化的子集模型。通过这种方式,MOR解决方案可实现更快的计算时间,并为各种实时控制应用打开了机会。另外,实现了最佳快照选择算法以获得全局基向量,该全局基向量在较大的控制窗口中覆盖模型参数和输入的足够信息以用于准确的MOR构造。为了进行控制演示,将对两种应用程序(多个规模的化学反应和多路径反应)执行计算机内控制方案,而仅对多路径化学反应执行现场控制。特别是对于软启动控制演示,已实现的框架适用于多输入(MI)/多输出(MO)以及输入扰动和输出噪声控制场景,而现场控制演示则适用于SI / SO输入干扰和MI / SO控制方案。获得的结果表明,与原始的完整模型相比,使用改进的MOR-MPC方法可以显着减少大约两个数量级的计算时间,相对误差为1.0×10〜(-3)。这意味着MOR可以应用于某些应用的实时控制,而对于完整的原始模型则不可能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号