...
首页> 外文期刊>Computers and Geotechnics >Pattern transitions of localized deformation in high-porosity sandstones: Insights from multiscale analysis
【24h】

Pattern transitions of localized deformation in high-porosity sandstones: Insights from multiscale analysis

机译:高孔隙度砂岩局部变形的模式转变:多尺度分析的见解

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We employ a hierarchical multiscale modeling approach to investigate the transitions of localized deformation patterns in high-porosity sandstone subjected to sustained shear to understand their underlying physics. The multiscale approach is based on hierarchical coupling between finite element method (FEM) with discrete element method (DEM) to offer cross-scale predictions for granular rocks without assuming phenomenological constitutive relations. Our simulations show that when a high-porosity sandstone specimen is subjected to continuous deviatoric loading, compaction bands may occur and evolve, featuring a steady movement of the compaction front (i.e. the boundary between the compaction band and the rest uncompacted zone). The specimen reaches a homogeneous state of reduced porosity when the compaction fronts traverse the entire specimen. A re-hardening response is initiated in the specimen under further shear, which is followed by a shearing dominating stage with the emergence of shear bands. The material responses inside the ultimate shear bands approach a "steady state" of constant porosity and stress ratio. Cross-scale analyses reveal that debonding and pore collapse are dominant mechanisms for the compaction stage of the specimen, and debonding and particle rotation dictate the physics for the shear banding stage. The transitions from compaction to shear banding occurs due to the degradation of the cohesive contact network and significant reduction in porosity. There are limited number of interparticle bonds remaining at the "steady state" under sustained shear, with a preferential direction perpendicular to the loading direction, leading to a higher steady void ratio than the critical state void ratio of non-cohesive sand.
机译:我们采用分层多尺度建模方法来调查高孔隙砂岩中局部变形模式的转变,经受持续的剪切以了解其底层物理学。多尺度方法基于具有分立元素法(DEM)的有限元方法(FEM)之间的分层耦合,以提供粒状岩石的横刻预测而不假设现象学构成关系。我们的模拟表明,当高孔隙砂岩样品经受连续脱模的负载时,可能发生压实带,并发展,具有压实前部的稳定运动(即压实带和其余的未分压区域之间的边界)。当压实前沿穿过整个样品时,样本达到孔隙率的均匀状态。在进一步剪切下的样品中引发重新硬化响应,其后是具有剪切带的出现的剪切主导阶段。最终剪切带内的材料响应接近恒定孔隙率和应力比的“稳态”。跨尺度分析表明,剥离和孔隙塌陷是标本压实阶段的主导机制,剥离和粒子旋转决定了剪切绷带阶段的物理学。由于粘性接触网络的劣化和孔隙率显着降低,因此由于粘性接触网络的降低而发生了从压实到剪切带的转变。在持续剪切下,在“稳态”下存在有限数量的晶间键,其优先方向垂直于负载方向,导致比非粘性砂的临界状态空隙率更高的空隙率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号